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In this study we use spectral analysis on SPY (Spiders) options to examine the relation between option 
spot and implied volatility for this exchange trade fund. We attempt to address the question is there a 
relation between the option spot and implied volatility or option implied volatility has no relation with the 
spot exchange trade fund volatility. We find that this relation does exist for SPY at-the-money call and put 
options and the in-the-money call and out-of-the-money put options. Using two spectral statistics – the 
coherence and the phase statistics, we find that the SPY option implied volatility and spot volatility have a 
relation and that the SPY option implied volatility leads the SPY spot volatility.  
 
INTRODUCTION 
 

In this study we address the issue - is there a relation between the spot and implied volatility or option 
implied volatility has no relation with the spot Exchange Traded Fund (ETF) volatility. The ETF that we 
choose to study is the Standard & Poor's Depositary Receipts SPDR S&P 500 ETF Trust, with ticker 
symbol – SPY, and popular name – Spider. The SPY tracks the S&P 500 index and is a Unit Investment 
Trust. The null hypothesis of the study is SPY spot volatility is not related to the SPY option implied 
volatility. We extend the work of Canina and Figlewski (1993) and Christensen and Prabhala (1998) who 
examine the same issue. Both studies use parametric tests to establish if such relation exists. However, 
financial data is typically non-normally distributed which invalidates conclusions based on parametric 
tests. In contrast to their studies we use the non-parametric tools of spectral analysis on SPY options to 
examine the relation between ETF spot and implied option volatility for this ETF.  

To the best of our knowledge this is the first study to address this question with non-parametric tools. 
This helps extend our understanding of ETF option behavior. We find that this relation does exist for the 
ETF at-the-money call and put options and the ETF in-the-money call and out-of-the-money put 
categories. Only for these option categories do the coherence spectral statistic is consistently above 50%. 
Using another spectral statistic, the phase statistic, we also find that the SPY option implied volatility and 
spot volatility have a lead-lag relation - the SPY option implied volatility leads the SPY spot volatility.  
 
LITERATURE REVIEW 
 

In this study I extend ideas developed and examined by Canina and Figlewski (1993), Christensen 
and Prabhala (1998), Bakshi, Kapadia and Madan (2003) and Ivanov, Whitworth and Zhang (2011). Both 
Canina and Figlewski (1993) and Christensen and Prabhala (1998) examine the issue of option implied 
volatility being related to spot and future spot volatility. Canina and Figlewski (1993) find that S&P 100 
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(OEX) index options implied volatility does not incorporate spot S&P 100 index volatility information. 
Christensen and Prabhala (1998) find the opposite. However, both studies use Ordinary Least Squares 
methodology which is a parametric tool. Financial and option data are typically non-normally distributed 
which leads to misspecification in parametric models. Therefore, we first show that the data are non-
normally distributed and use non-parametric spectral analysis methodology. Additionally, both studies 
use the Black – Scholes formula to estimate the OEX option implied volatility. However, the OEX option 
is an American style option, whereas the Black – Scholes formula is used to estimate the implied 
volatility for European style options. We address and correct this issue as well because the SPY ETF 
option used in this study is also American style, but we do not use the Black – Scholes formula to 
estimate its implied volatility. We follow Ivanov, Whitworth and Zhang (2011) methodology and re-
compute the SPY option implied volatility based on a 100-step binomial tree model. 

Bakshi, Kapadia and Madan (2003) study skewness in stock and option markets. They find that 
individual stocks are more volatile than the index that they belong to and that the reason for the option 
implied volatility changes might be due to the difference in the stochastic process governing the returns of 
the underlying indexes and stocks. 

Ivanov, Whitworth and Zhang (2011) study ETF option implied volatility and find that volatility 
smiles of ETF options are more pronounced than for index options. They also find that the reason for the 
difference is not due to the proposed by Bakshi, Kapadia and Madan (2003) difference in the stochastic 
processes of the underlying indexes. Their findings are in agreement with a study by Bollen and Whaley 
(2004). 

Bollen and Whaley (2004) study S&P 500 index options and stock options of the underlying stocks 
on intradaily basis. Bollen and Whaley (2004) find that S&P 500 index option implied volatility are most 
often influenced by demand for index puts and by demand for call stock options. Bollen and Whaley 
(2004) interpretation of the behavior of option implied volatilities based on the differential demand for 
options is different from the interpretation of Bakshi, Kapadia and Madan (2003) that the reason for the 
implied volatility changes might be due to the difference in the stochastic process governing the returns of 
the underlying indexes and stocks.  

Therefore, based on these studies and the lack of agreement and consistent evidence in the literature 
we propose the use of non-parametric tools such as spectral analysis to examine if spot volatility is related 
to option implied volatility.  
 
DATA AND METHODOLOGY 
 

The options data are obtained from deltaneutral.com but modified to account for the fact that ETF 
options are American options. The data for the SPY are over the period - 01/10/2005 to 12/30/2005. The 
SPY was introduced on January 30, 1993 and is designed to be 1/10 of the S&P500. The SPY options are 
listed on the Chicago Board Options Exchange (CBOE) and started trading in January 2005 that is why 
we focus on the one ear period - 01/10/2005 to 12/30/2005. SPY options are American style options. 
Considering that SPY options are American style, whereas the implied volatility in the original database 
are computed based on the Black-Scholes formula which is for European style options, we follow Ivanov, 
Whitworth and Zhang (2011) methodology and re-compute the SPY option implied volatility based on a 
100-step binomial tree model. The null hypothesis of the study is: 

 
H0: SPY spot volatility is not related to the SPY option implied volatility. 

 
Rejection of the null hypothesis would indicate that such a relation exists. Following the studies of 

Day and Lewis (1988), Xu and Taylor (1994) and Ivanov, Whitworth and Zhang (2011) we filter the 
options data to minimize influence of outliers in the analysis that follows. The filtering is conducted based 
on the following standard criteria: 

The time to expiration is filtered to be greater than 7 days and less than 30 days. 
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a) The option is filtered to satisfy the European option boundary conditions, c < Se−δT – Xe−rT 
and p < Xe−rT – Se−δT. 

b) The option is filtered to satisfy the American option boundary conditions, C < S – X and 
P < X – S. 

c) The option is filtered not to be so deep-out of or in-the-money that exercise is either 
impossible or absolutely certain; i.e., we filter based on the absolute value of the option’s 
hedging delta to be within the bounds 0.02 and 0.98. 

 
To identify moneyness categories we follow the Bollen and Whaley (2004) classification based on the 

option’s delta. The five categories that we examine are identified in Table 1. 
 

TABLE 1  
BOLLEN AND WHALEY (2004) CLASSIFICATION OF MONEYNESS CATEGORIES 

 
Category Labels Range 
1 Deep-in-the-money (DITM) call 

Deep-out-of-the-money (DOTM) put 
0.875<∆c<=0.98 

-0.125<∆p<= -0.02 
2 In-the-money (ITM) call 

Out-of-the-money (OTM) put 
0.625<∆c<=0.875 

-0.375<∆p<= -0.125 
3 At-the-money (ATM) call 

At-the-money (ATM) put 
0.375<∆c<=0.625 

-0.625<∆p<= -0.375 
4 Out-of-the-money (OTM) call 

In-the-money (ITM) put 
0.125<∆c<=0.375 

-0.875<∆p<= -0.625 
5 Deep-out-of-the-money (DOTM) call 

Deep-in-the-money (DITM) put 
0.02<∆c<=0.125 

-0.98<∆p<= -0.875 
 
 

After we identify the different categories of call and put options we analyze the data by using spectral 
analysis. We examine if the spot SPY volatility is related to the SPY options implied volatility. Spectral 
analysis is considered to be a more robust analytic method than traditional regression analysis because it 
is non-parametric. Spectral analysis does not require a model specification and does not impose structure 
on the link between dependent and independent variables (Jenkins, 1965). Nevertheless, the 
nonparametric nature of spectral analysis has inefficiencies because large number of parameters need to 
be estimated. Additionally, the condition for stationarity of the studied time series is essential to reach any 
meaningful conclusions. 

Consider the covariance stationary random variable ‘yt’: 
 

0
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B(L) is the polynomial of the lag operator for ‘bj’ with: 
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where ‘yt’ is generated from the random white noise process ‘εt’. 
‘εt’ has the conventional statistical properties:  
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the covariance function for ‘yt’ leads to: 
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The covariance has a covariance generating function characterized by the following equation: 
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Further if ‘z’ is characterized by  
 

iz e ω−= , (8) 
 
the covariance generating function is characterized by: 
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this is called the spectrum of the variable ‘yt’ with ‘w’ being the frequency. The spectrum is the Fourier 
transform of the covariogram of the examined variable. The spectrum can be further modified to have 
more useful geometric properties: 
 

1
( ) ( ) (0) 2 ( )cos( )i i k

y y y y
k k
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since cos( ) cos( )k kω ω− = and i ie eω ω− = . The equation in (10) represents the link between the function 
of the covariogram of variable ‘yt’ and the cos-function of the frequency and means that the spectrum is 
always nonnegative. This also means that the spectrum of a white noise process is a constant number. 

This univariate analysis can be extrapolated to a bivariate framework, known as co-spectral analysis 
and it helps to analyze the covariation between two stationary processes ‘xt’ and ‘yt’. The covariance 
generating function is represented by the equation: 
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and again substituting in iz e ω−=  we get the bivariate spectrum represented by the following equation: 
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(for a detailed discussion of this methodology see Sargent, 1979). 
Therefore, in the analysis that follows covariance stationarity tests will be performed first, followed 

by univariate spectral analysis to establish “typical” spectral shape for the variables, cross spectrum 
calculations will be used last to establish comovement between the spot SPY volatility and the call and 
put options implied volatilities. 

Following Sargent (1979) and Erol, and Koray (1988) kernels are used to smooth the spectral density 
of the variables by calculating a weighted moving average of nearby periodogram points to get rid of any 
noise. The theory does not specify a preference of one kernel over another therefore we use three different 
kernel specifications in the analysis to establish robustness of the results. Andrews (1991) discusses 
detailed description of the smoothed periodogram using kernels which is defined as: 
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Where w(x) is the kernel, x = 
( )l q
τ

, l(q) is the bandwidth parameter over which the smoothing will be 

performed. The parameter ‘q’ is the number of periodogram ordinates +1. At the endpoints of the 
bandwidth a cycle is used to compute averages which is represented by: 
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The Bartlett kernel is specified as follows: 
 

1   x 1
( )     

0          otherwise
x
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1
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2
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(15) 

 
the Parzen kernel is specified as follows: 
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 with bandwidth 
1
5l(q)=q , 

(16) 

and the Tukey – Hanning kernel is specified as follows: 
 

(1 cos( )) / 2  x 1
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x
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(17) 

 
Next, we use two spectral analysis statistics to estimate the relationship of the options implied volatility 
and the spot standard deviation - the coherence statistic and the phase statistic. The coherence from 
spectral analysis is similar to the correlation coefficient. The coherence represents a percentage of 
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explanation of one of the variables variation by the second variables variation, but at different frequencies 
of the spectrum (the frequencies range from 0 to 3.14159(π)). The spectrum is usually used to establish 
the most typical frequency in the frequency domain where the coherence has most meaning. The 
coherence statistic is computed as follows: 
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and represents the product of two forward and backward looking gain statistics (Jenkins, 1965) and is in 
the range 0 to 1. The gain statistic is defined as: 
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The different elements in the equation are as follows: co(w) is the cospectrum, qu(w) is the quadrature 
spectrum and ‘i’ is the imaginary component in the spectral analysis. The phase statistic is considered to 
measure the shift between the two waves and can be interpreted as a lead-lag relationship of the two series 
over the frequencies range and may be used to establish statistical causality. The phase statistic is 
computed as follows: 
 

1
( )
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θ ω
ω
ω
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.                                                                                                   (20) 

 
However, keep in mind that Hause (1971) and Stone (1975) suggest in the spectral analysis literature that 
the phase statistic cannot be used to establish lead-lag relationships. 
 
ANALYSIS 
 

Table 2 provides summary statistics on the five different categories of call and put options implied 
volatilities and the twenty day moving average rolling standard deviations. Over the examined period 
there are 204 observations. The twenty day mean standard deviation is 1.07. The Deep-in-the-money 
(DITM) call and put options mean implied volatilities are highest among the five moneyness categories.  
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TABLE 2 
SUMMARY STATISTICS, IMPLIED VOLATILITY OF SPY CALL AND PUT OPTIONS FOR 

THE PERIOD JANUARY 10, 2005 TO DECEMBER 30, 2005  
 

 Category 1 Category 2 Category 3 Category 4 Category 5 20 day 

 
Mean 
IVc 

Mean 
IVp 

Mean 
IVc 

Mean 
IVp 

Mean 
IVc 

Mean 
IVp 

Mean 
IVc 

Mean 
IVp 

Mean 
IVc 

Mean 
IVp stdev 

Mean 0.26 0.19 0.14 0.14 0.11 0.12 0.11 0.16 0.12 0.38 1.07 
Median 0.25 0.19 0.14 0.14 0.11 0.12 0.10 0.13 0.12 0.36 1.00 
Std Dev 0.10 0.03 0.02 0.02 0.02 0.02 0.01 0.07 0.02 0.14 0.36 
Minimum 0.11 0.14 0.09 0.10 0.08 0.09 0.08 0.08 0.09 0.08 0.40 
Maximum 0.76 0.26 0.24 0.18 0.17 0.17 0.15 0.43 0.19 0.84 1.96 
Skewness 1.23 0.39 1.02 0.34 1.00 0.19 0.86 1.63 0.58 0.66 0.52 
Kurtosis 3.46 -0.38 1.39 -0.18 0.94 -0.44 0.58 2.29 -0.23 1.13 -0.43 
20 day 
stdev 
Correlation 0.17 0.27 0.31 0.23 0.31 0.12 0.29 -0.10 0.14 -0.08 1 

 
 

The mean DITM call option implied volatility is 0.26, whereas the DITM put option mean implied 
volatility is 0.38. All of the rest of the mean implied volatilities are less than 0.19 and much less than the 
mean twenty day standard deviations. This suggests that the factors forming option implied volatilities 
might be different than the spot volatility, motivating and providing evidence that this study is needed, 
and evidence against the null hypothesis of the study of spot volatility influencing option implied 
volatility.  

In the table correlation coefficients are also provided with the twenty day standard deviations. All of 
the correlation coefficients are equal or less than 0.31, which also provides evidence against the null 
hypothesis of the study of spot volatility influencing option implied volatility. . However, keep in mind 
that correlation coefficients might lead to erroneous conclusions because the data are non-normally 
distributed. 

Spectral analysis requires stationarity in the time series, without stationarity in the time series spectral 
analysis the results of the analysis are meaningless. To examine in more detail the implied volatility and 
standard deviation distributions, we also compute the third and fourth moments for the variables. These 
variables are also reported in the table. The results for the skewness indicate that the distributions of both 
implied volatility and spot standard deviation are positively skewed, which suggests difference from 
normal distribution. The results for kurtosis, similar to the skewness results, suggest non-normal 
distribution. The non-normality indicates that parametric tests results would be meaningless. However, 
normality is not essential for conducting spectral analysis, stationarity is, considering that spectral 
analysis is a non-parametric methodology. Therefore, stationarity of the call and put options implied 
volatilities needs to be established first.  
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FIGURE 1 
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Visually all option implied volatility series and twenty day moving standard deviation series are 
stationary as shown visually in Figure 1. However, stationarity needs to be tested formally. The tests for 
stationarity that we use in the analysis are the Augmented Dickey Fuller (ADF) test for unit roots and 
White Noise Tests - Fisher's Kappa and Bartlett's Kolmogorov-Smirnov. Fisher’s Kappa tests if the 
largest value of the periodogram Jk is statistically different from the mean value of the periodogram. The 
basic idea is that if Jk is a white noise process it would have a constant mean and constant variance at any 
period of the periodogram. The Kolmogorov-Smirnov test examines if the normalized cumulative 
periodogram of Jk represented by: 

 

1
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is statistically different from the cumulative distribution function of a uniform (0,1) random variable. The 
null hypothesis of the Kolmogorov-Smirnov test is: the periodogram is a white noise process. 

The stationarity test results are presented in Table 3. Based on the stationarity tests results that the call 
and put options implied volatilities and standard deviations are stationary we can proceed with the 
spectral analysis.  
 

TABLE 3 
WHITE NOISE TEST RESULTS USING AUGMENTED DICKEY FULLER (ADF) TEST FOR 

UNIT ROOTS (P-VALUES REPORTED), FISHER’S KAPPA (WITH AN APPROXIMATE 
CRITICAL VALUE OF AROUND 9.707) AND BARTLETT’S KOLMOGOROV-SMIRNOV 

(BKS) STATISTIC (P-VALUES REPORTED) ON IMPLIED VOLATILITIES AND  
20 DAY SPOT STANDARD DEVIATION  

 

 Cat 
1  

Cat 
2  

Cat 
3  

CaT 
4  

Cat 
5  Stdev 

 call put call put call put call put call put  

ADF Zero 
Mean 0.0291 0.5751 0.4703 0.5739 0.5267 0.5197 0.5380 0.1794 0.3822 0.1564 0.1722 

ADF 
Single 
Mean 

0.0001 0.0020 0.0014 0.0014 0.0015 0.0014 0.0017 0.0014 0.0014 0.0014 0.0014 

ADF Trend 0.0001 0.0155 0.0029 0.0048 0.0106 0.0006 0.0102 0.0041 0.0006 0.0006 0.0006 

Kappa 5.056 44.534 32.169 44.292 32.432 22.919 25.262 45.195 41.003 33.966 23.980 

BKS <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 
 

Next we determine the SPY call and put option implied volatility spectral density.  For the different 
moneyness categories the periodicity cycles are with different lengths. The periodicities range between 17 
to 100 days. The periodicity ranges are presented in Table 4. The table shows that the periodicity is 
different for the different types of options and moneyness categories of these options. The periodicity is 
lowest for DOTM call options, 17 days, and highest for the DOTM puts, OTM and ATM puts, and ITM 
and ATM calls, 102 days. 
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TABLE 4 
SPECTRAL DENSITY PERIODICITY OF SPY CALL AND PUT OPTIONS IMPLIED 

VOLATILITY FOR THE PERIOD JANUARY 10, 2005 TO DECEMBER 30, 2005 
 

 Category 1 Category 2 Category 3 Category 4 Category 5 
call 68 102 102 51 17 
put 102 102 102 51 51 

 
 

After establishing the periodicity of the SPY option implied volatility wave we can examine the 
relation between SPY option call and put option implied volatility and the SPY spot volatility. Table 5 
presents results for coherence and phase statistics for this relation. The table also reports different kernel 
specifications for robustness. The coherence statistic, across kernel specifications, is highest and thus 
rejecting the null hypothesis for the ATM (Category 3) call and put options, coherence in the range – 0.64 
to 0.85, which are double than the simple correlation coefficients reported earlier in the paper. The next 
highest coherences are for the call ITM and put OTM categories - ITM call and OTM put (Category 2), 
and DITM call and DOTM put (Category 1) options. The coherence ranges are - 0.30 to 0.78, which are 
again almost double than the simple correlation coefficients reported earlier in the paper. However, keep 
in mind that correlation coefficients might be wrong because the data are non-normally distributed. 
 

TABLE 5 
COHERENCE AND PHASE OF SPY CALL AND PUT OPTIONS IMPLIED VOLATILITY 

RELATIVE TO THE SPY SPOT STANDARD DEVIATION FOR THE PERIOD  
JANUARY 10, 2005 TO DECEMBER 30, 2005 AT THE SPECTRAL  

DENSITY PERIODICITY  
 

 Category 1 Category 2 Category 3 Category 4 Category 5 
Bartlett      
coherence      
call 0.30 0.65 0.72 0.17 0.01 
put 0.60 0.64 0.64 0.16 0.11 
phase      
call 0.94 0.39 0.39 0.38 0.70 
put 0.23 0.29 0.26 -3.05 -3.14 
Parzen      
coherence      
call 0.32 0.75 0.81 0.24 0.02 
put 0.71 0.74 0.75 0.40 0.33 
phase      
call 1.03 0.39 0.40 0.22 1.04 
put 0.23 0.28 0.26 3.09 3.04 
Tukey-Hanning      
coherence      
call 0.32 0.79 0.85 0.33 0.03 
put 0.76 0.78 0.80 0.55 0.48 
phase      
call 1.12 0.38 0.40 0.18 1.14 
put 0.23 0.28 0.26 3.04 3.02 
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The coherences for the Category 4 and Category 5 options are low, which suggests acceptance of the 
null hypothesis. These are the OTM and DOTM call options and the ITM and DITM put options. The 
phase statistics are all positive with the exception of the phase statistics produced by the Bartlett kernel 
for Category 4 and 5 put options. This suggests that the option implied volatility leads the spot volatility 
of SPY. Hause (1971) and Stone (1975) suggest that the phase statistic cannot be used to establish lead-
lag relations. Nevertheless, one thing is clear the SPY option implied volatility and spot volatility have a 
lead-lag relation. This also is evidence rejecting the null hypothesis of the study, which suggests the 
existence of a relation between the ETF spot and ETF option implied volatility. 
 
CONCLUSION 
 

In this study we use spectral analysis on SPY options to examine the relation between spot and 
implied option volatility for these exchange traded funds (ETF). We attempt to address the question is 
there a relation between spot and implied volatility or option implied volatility has no relation with the 
spot ETF volatility. The null hypothesis of the study is spot volatility influencing option implied 
volatility. To the best of our knowledge this is the first study to address this question. This helps extend 
our understanding of ETF option behavior. We find that this relation does exist; however, consistently 
this is true only for the at-the-money call and put options and the in-the-money call and out-of-the-money 
put categories. Only for these categories of options the coherence statistic is consistently in the range – 
0.64 to 0.85.  

Using another spectral statistic, the phase statistic, we also find that the SPY option implied volatility 
and spot volatility have a lead-lag relation - the SPY option implied volatility leads the SPY spot 
volatility. This is also evidence suggesting that a relation between the ETF spot and ETF option implied 
volatility exists. 
 
REFERENCES 
 
Canina, L. and Figlewski, S., 1993, The Informational Content of Implied Volatility. Review of Financial 

Studies, Vol. 6, No. 3, pp. 659-681.  
Christensen, B.J. and Prabhala, N.R. 1998, The Relation between Implied and Realized Volatility. 

Journal of Financial Economics, Vol. 50, No. 2, pp. 125-150.  
Bakshi, G., Kapadia, N. and Madan, D., 2003, Stock Return Characteristics, Skew   Laws, and the 

Differential Pricing of Individual Equity Options. Review of Financial Studies, Vol. 16, No. 1, pp. 
101–143. 

Bollen, N. P. B., and Whaley, R.E., 2004, Does Net Buying Pressure Affect the Shape of Implied 
Volatility Functions? The Journal of Finance, Vol. 59, No. 2, pp. 711-753. 

Day, T.E. and Lewis, C.M., 1988, The Behavior of the Volatility Implicit in the Prices of Stock Index 
Options. Journal of Financial Economics, Vol. 22, No. 1, pp. 103-122. 

Hause, J. C., 1971, Spectral Analysis and the Detection of Lead-Lag Relations. The American Economic 
Review, Vol. 61, No. 1, pp. 213-217. 

Ivanov, S. I., Whitworth, J. and Zhang, Y., 2011, The Implied Volatility of ETF and Index Options. The 
International Journal of Business and Finance Research, Vol. 5, No. 4, pp. 35-44. 

Jenkins, G.M., 1965, A Survey of Spectral Analysis. Applied Statistics, Vol. 14, No. 1, pp. 2-32.  
Lakonishok, J., Lee, I., and Poteshman, A.M., 2004, Investor Behavior and the Option Market. NBER 

Working Paper 10264, http://www.nber.org/papers/w10264. 
Sargent, T. J. (1979) Macroeconomic Theory. Academic Press. 
Stone, M., 1975, Spectral Analysis, Phase Estimates, and Lead-Lag Relationships. The American 

Economist, Vol. 19, No. 1, pp. 52-54. 
Xu, X. and Taylor, S.J., 1994, The Term Structure of Volatility Implied by Foreign Exchange Options. 

Journal of Financial and Quantitative Analysis, Vol. 29, No. 1, pp. 57-74. 
 

Journal of Applied Business and Economics vol. 16(4) 2014     21

http://www.nber.org/papers/w10264�



