
 Journal of Accounting and Finance Vol. 17(6) 2017 9

 
 
 
 
 
 
 
 

Analyzing the Contagion Effect of Foreclosures as a Branching Process: 
A Close Look at the Years that Follow the Great Recession 

 

Dror Parnes 
Texas A&M University-Commerce 

We lean on the phenomenon called the �foreclosure contagion effect,� generate proxy measurements of 
contagious foreclosures, construct mathematical branching processes that depict the spread of these 
consequential defaults, and analyze the gradual progression of these foreclosures across the 366 
metropolitan areas in the U.S. throughout the 15 quarters that follow the great recession. We find that the 
foreclosure epidemic was far from its conclusion by the end of 2013, although the U.S. housing crisis is 
broadly defined as lasting from 2007 to 2009. In this period, prime-loan (subprime-loan) associated 
contagious foreclosures had further worsened in about 52% (27%) of the metropolitan areas in the U.S.  
 
INTRODUCTION 
 

The great recession (associated with the U.S. financial crisis of 2007�2008 and the subprime 
mortgage crisis of 2007�2009) demonstrated that the real estate market plays a significant role in a 
nation�s broader economy. The collapse of the U.S. housing market during these years has confirmed the 
influence of this economic sector on other modules of the economy and illuminated the systematic risk 
involved in it. This modern real estate meltdown had two distinct attributes: a significant reduction in 
housing prices and a widespread foreclosure epidemic. These two developments are tightly connected 
through a perpetual self-feeding mechanism often called the �foreclosure contagion effect.� In this study 
we assess this well documented continual time-series feedback system, construct universal branching 
processes to depict the prospective spread of consequential foreclosures, and analyze the gradual 
progression of these contagious foreclosures across the 366 metropolitan areas in the U.S. throughout the 
four years that follow the great recession.  

We assume that each foreclosed house has the potential to trigger other foreclosures in its 
neighborhood. By acquiring proxy measurements of contagious foreclosures and deploying branching 
process methodologies, we model the probable diffusions of these consequential foreclosures and their 
ergodic properties. In particular, we postulate the necessary derivations for the number of contagious 
foreclosures in a closed metropolitan area and within predefined time intervals. We also depict the 
prospective distributions of the total number of transmissible foreclosed properties under varying 
economic settings. We designate the likelihood for a complete elimination of foreclosed residences from a 
given urban region. In addition, we provide essential Bayesian estimates and confidence intervals for the 
model�s parameters, and further derive the likely duration of a foreclosure epidemic given various 
velocities of progression.  
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In the subsequent empirical section we first collect genuine data of foreclosure rates across the 366 
metropolitan areas in the U.S., as classified by the U.S. Office of Management and Budget (OMB), from 
the beginning of 2010 until the end of the third quarter of 2013. Our accessible database is divided into 
three subsamples: the inclusive mortgage market, the prime loans market, and the subprime loans market. 
This allows us to separately explore the trends of contagious foreclosures in these three groups. We then 
generate representative figures for the respective foreclosure rates that are associated with the foreclosure 
contagion effect and deploy the model�s mathematical derivations over these proxy measurements.  

Our empirical findings repeatedly indicate that the foreclosure epidemic of the great recession not 
only did not end, as many perceived, in 2009, but was still far from its conclusion even towards the end of 
2013, with significant gradual increments in contagious foreclosure rates in many of the test areas in the 
years that followed this crisis. To authenticate this observation, we analyze a large set of distributional 
properties of these new consequential foreclosures.  

This investigation is crucial to our understanding of how the recent housing downturn cycle continues 
to affect not only the real estate market but also the wider economy. In particular, our empirical findings 
convey valuable insights into themes that involve future city plans, new constructions, rentals, mortgage 
rates, lending banks and financial institutions, employment opportunities, government and local 
assistance and emergency programs, personal finance, imminent investments in schooling, roads, and 
other municipal services to communities.  

Numerous academic studies, newspaper articles, biographies, and anthologies have been written thus 
far on the structural and financial failures that led to the toxic fallout throughout the recent U.S. 
foreclosure epidemic. Countless experts have stretched their testimonies in front of the U.S. Congress and 
other regulatory bodies to explain the root causes and the unprecedented expansion of this modern 
housing crisis.1 Nonetheless, to the best of our knowledge, the literature has been relatively silent so far 
about the aftermath of the great recession.2

Our contributions in this study, therefore, reside along three dimensions. First, we present a complete 
set of mathematical procedures that together can monitor, almost in real-time, the ongoing evolution of 
contagious foreclosures in specified metropolitan areas. These combined policy tools are universal; they 
do not rely on any particular assumptions (besides accepting the �foreclosure contagion effect�), and 
essentially they can be activated by regulators under a broad class of economic circumstances. Second, 
we deploy the resulting statistical and distributional techniques over a comprehensive sample of 
foreclosure rates and reveal the lasting deterioration of the U.S. housing market, long after the period by 
which the great recession is commonly defined. And third, we also embed into our proposed framework a 
balanced policy discussion on the possible regulatory actions and their likely consequences.  

The study proceeds as follows. In Section 2 we provide a literature review that substantiates the 
prevalence of the phenomenon called the �foreclosure contagion effect.�3 In Section 3 we present 
multiple channels of the mathematical theory of branching processes and explain how the modules of this 
framework can be applied to trace the expansion of virulent foreclosures. In Section 4 we conduct an 
empirical investigation where we deploy the various components of the theory over proxy records of 
contagious foreclosure rates across the 366 metropolitan areas within the U.S. from the first quarter of 
2010 until the third quarter of 2013. In Section 5 we summarize our findings, stage a concise policy 
debate, and conclude.  

 
RELEVANT LITERATURE  
 

Numerous studies document the �foreclosure contagion effect� throughout the great recession of 
2007�2009. This phenomenon entails both the reduction in housing prices because of neighboring 
foreclosures and the ignition of further foreclosures due to a devaluation of nearby properties. 
Immergluck and Smith (2006a, 2006b) were among the first scholars to recognize that foreclosures of 
conventional single-family houses (defined as one- to four-bedroom units) mount a significant pressure 
on nearby property values. In fact, their studies preceded the great recession and were based on data on 
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foreclosures in the city of Chicago in 1997 and 1998 with property sales recorded in 2000. Schuetz, Been, 
and Ellen (2008) further explored the foreclosure contagion effect in the city of New York and 
emphasized the need for government intervention to remedy the consequential reduction in local tax 
bases. The latter authors found that the magnitude of the sale price discount increases with the number of 
foreclosed properties, yet not in a linear response curve.  

Other studies provide arguments complementary to the foreclosure contagion effect. Demyanyk and 
Henert (2009) deploy a proportional odds model and show that the subsequent low house price 
appreciation for 2006 and 2007 loans was the key determinant for the modern foreclosure epidemic. 
Gerardi, Shapiro, and Willen (2009) utilize both purchase and sale records of residential mortgage and 
foreclosure transactions in Massachusetts from 1989 to 2008 and estimate the effects of changes in 
housing prices on residential foreclosures. The authors conclude that the recent foreclosure crisis took 
place not so much because of the relaxation of underwriting standards but rather in light of the severe 
decline in property values, which began at the end of 2005.  

Another branch of the literature looks at the effects of physical damages to distressed properties, 
which decrease the value of nearby houses and feed the foreclosure contagion effect. Harding, Rosenblatt, 
and Yao (2009) describe the gross neglect, abandonment, and vandalism often associated with foreclosed 
properties. In addition, the authors pronounce the �excess supply� economic aspect of foreclosures, which 
naturally lowers property values. The authors report that these destructive elements have two dimensions, 
time and distance; they can stretch along 0.9 kilometer (roughly 10 blocks) and within 5 years from a 
liquidation event.  

Lin, Rosenblatt, and Yao (2009) use data from Chicago, IL, explain that foreclosures often result in 
vandalism, disinvestment, and other negative spillover effects in respective neighborhoods, develop a 
theoretical model to analyze these spillover effects, and find that these harmful aspects depress 
neighborhood property values by as much as 8.7% per event. Rogers and Winter (2009) focus on the St. 
Louis real estate submarket and rationalize the increase in neighborhood crime rates as a result of 
foreclosures that leave properties vacant for extended periods of time, which also reduces adjacent house 
values and destabilizes neighborhoods. Interestingly, these authors detect that while the impact of 
foreclosures is both statistically and economically significant across communities, the marginal impact of 
foreclosures declines as the number of foreclosures increases.  

Campbell, Giglio, and Pathak (2011) explain that foreclosed houses in Massachusetts are likely to sell 
at low prices, both because they may be physically damaged during the foreclosure process and because 
their respective original lenders aim to sell them quickly. These additional price reductions naturally 
affect the values of nearby houses as well. Rauterkus, Miller, Thrall, and Sklarz (2012) utilize distressed 
and non-distressed sales in Chicago, IL, to inspect Real Estate Owned (REO, a class of properties owned 
by the lenders) discounted sales. The authors observe that neighborhoods with relatively high foreclosure 
rates have a smaller gap between distressed and non-distressed sale prices, when compared to areas with 
low foreclosure rates.  

Fisher, Lambie-Hanson, and Willen (2013) further study the �supply effect� and the �physical 
externality effect� of foreclosures on neighboring condominium properties in Boston, MA. The authors 
find evidence that investment externalities drive foreclosures� impacts on nearby condominium prices. In 
particular, adjacent foreclosures reduce the sale price of Boston condominiums by more than 6% 
compared to other properties in the same census tract that sell without any foreclosures nearby.  

Gangel, Seiler, and Collins (2013a) examine the magnitude of the foreclosure contagion effect 
through a simulated agent-based modeling approach and discover that the time a foreclosed property is 
left to flounder on the market is the most detrimental factor to a market�s stability. To further assist 
policymakers in identifying necessary-to-intervene submarkets, Gangel, Seiler, and Collins (2013b) use a 
Latin Hypercube Sampling technique and mathematically specify the foreclosure contagion threshold, i.e. 
the precise boundary that separates surviving real estate markets from those that crash. Towe and Lawley 
(2013) further use micro-data and identify highly localized foreclosures contagion effects in Maryland.  

Another strand of research explores several human behavioral aspects of real estate equity 
deficiencies and foreclosure sales. Shefrin and Statman (1985) introduce the �disposition effect,� 
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describing homeowners reluctant to lose equity. Genesove and Mayer (1997, 2001) and Engelhardt 
(2003) find that real estate sellers often have a strong element of loss aversion. More recently, Ong, Neo, 
and Tu (2008) focus on the influence of price expectations, volatility and equity losses on foreclosure 
transactions. Using data from Singapore, the latter authors empirically show that differences in seller 
response to market expectations and equity losses exist across foreclosure and non-foreclosure sales, 
while past price movement is the most important determinant.4  

The well documented phenomenon called the �foreclosure contagion effect� forms the basis of the 
following notional model. There are other studies that delve into this subject matter. Many of these 
articles scrutinize various legal aspects of the impact of foreclosures on the values of nearby properties as 
well as legal issues of the opposite causality effect. We shall refer to some in our later policy discussion.  
 
THE MODEL OF BRANCHING PROCESS 
 
The Underlying Theory  

In this exploration we presume that new foreclosures may arise because of either a foreclosure 
contagion effect within the same metropolitan area or in light of macroeconomic factors such as changes 
in the local labor market. As observed during the recent subprime mortgage crisis in the U.S., a bank 
foreclosure process immediately adds more pressure on home values in the neighboring region. As a 
result of depressed housing prices, further foreclosures in that area could strike. This situation arises when 
existing mortgage loans carry higher debts than their corresponding home values hence when properties 
are �underwater� or in �negative equity.� These circumstances, as recently witnessed, cause homeowners 
to simply walk away from their properties, even when borrowers are fully capable of paying their existing 
mortgage loans. In these �strategic default� cases, mortgagers lose any incentives to service their 
respective debts; they tend to abandon their houses as bank foreclosed properties, while these new 
foreclosures mount even more contagious pressure on home values in the respective metropolitan areas.  

In many instances, however, foreclosures are instigated by sudden losses of income among 
mortgagers. A significant wave of layoffs not only prompts new bank foreclosures, but also causes higher 
unemployment rate in the respective region, which then creates more economic pressure on that 
metropolitan area in the forms of lower purchasing power by consumers and further deterioration in the 
regional economic output, thus more job losses and consequently additional distressed mortgagers and 
foreclosures.  

Among others, Calomiris, Longhofer, and Miles (2013) use a dynamic panel vector autoregressive 
model (PVAR) and authenticate how foreclosures and home prices interact within a larger 
macroeconomic framework that includes U.S. state-level variables such as employment, construction 
permits, and housing sales for the period 1981�2009.5 Rogers and Winkler (2013) reveal that in the 
majority of the U.S. metropolitan areas, domestic labor markets declined prior to the respective housing 
markets, somewhat contrary to the national pattern.6 Rana and Shea (2015) use a local projection method 
and further validate the U.S. state-level relationship among unemployment, foreclosures, and housing 
prices during the great recession.  

Altogether, in light of the foreclosure contagion effect, in the following investigation we shall assume 
that a bank foreclosure  generates  of new foreclosed properties during the 
successive time unit . We can further assume that  are independent and identically distributed 
(i.i.d.) random variables. While  denotes the initially recorded number of foreclosures within a given 
region,  accumulates the total number of new foreclosures created within time interval , and 

 represents the average number of contagious foreclosed properties that arise within the same 
metropolitan area throughout the measured time units (in our later empirical section, a standard time unit 
is set to be a quarter of a year). These notations assist us in depicting the systemic risk of bank 
foreclosures as a set of spanning trees.  

We can therefore model the potential spread of transmissible foreclosures in a specified metropolitan 
area with a homogeneous Bienaymé-Galton-Watson (BGW) branching process. In this setting,  is a 
random number that controls both the length (the expected duration) and the depth (the scaled number of 
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contagious foreclosed homes) of a foreclosure epidemic in a confined housing market. When , a 
domestic foreclosure outbreak in any metropolitan area has a real potential to become a widespread 
national epidemic. Conversely, when , the ergodic properties of the snowball effects described 
above dictate that the BGW branching process is interrupted with probability 1, regardless of any 
regulatory intervention.7 Nevertheless, in practice, it is advisable to maintain  well below unity. 
Depending on whether , , or , in the relevant mathematics literature a branching process 
is called subcritical, critical, or supercritical, respectively. 

  
To formalize this BGW branching process, we express the spread of foreclosures as:  

.  

Since  denotes the average number of new contagious foreclosed properties that arise within the 
same metropolitan area throughout the measured time units, we can observe that the foreclosure 
branching process starts from  cases. In the next time unit there will be, on average,  new 
foreclosures. In the subsequent time unit there will be  cases, which are then followed by 
foreclosures, and so forth. All together a foreclosure epidemic is expected to yield the power series 

. Thus, for the purpose of model tractability we can now assume that  has a 
generalized power series distribution. This broad family of discrete distributions includes the Binomial, 
Poisson, Negative Binomial (in particular, Geometric), and Logarithmic series distributions, as well as the 
truncated forms of these disseminations, as special cases. Under these circumstances we obtain  

,  

where , ,  is a canonical (natural generator) parameter, and  is a non-
negative integer. The mean of  is defined as 

.  

In our context, however, the Binomial distribution could be an over-simplification of reality. This 
dissemination does not faithfully represent the potential spread of contagious foreclosures in light of its 
reliance on binary situations of either transmissions or no-transmissions of necessary conditions for bank 
foreclosures across nearby houses.8 We therefore direct our attention to the Poisson and the Geometric 
distributions as representative disseminations of , as described hereafter.9  

In the case that  follows a Poisson distribution, , , , where 

, and . When  follows a Geometric distribution, , , 

, where , and .  

The distribution of the possible magnitude of a foreclosure epidemic is of high interest to regulators 
and policymakers. We now denote  as the final (total) recorded number of foreclosures within a 
specified area (along all feasible time units), thus by definition . Consequently, the 
distribution of  is the -th convolution of  hence  

(2) 

(3) 

 (1) 



14 Journal of Accounting and Finance Vol. 17(6) 2017 

,  

where , and  are i.i.d random variables.  

When  follows a Poisson distribution, i.e. when , we can use the sum of i.i.d 

Poisson random variables with parameter  and get:  

.  

Therefore, in this discrete domain, the Probability Mass Function (PMF) of the total recorded number 
of foreclosures  becomes:  

,  

where , i.e.  has a Borel-Tanner distribution, as extended by Haight and Breuer 
(1960). When computation challenges arise in light of an excessive number of contagious foreclosed 
homes beyond the initial level, i.e. when  is quite large and both the power term in the numerator 
and the factorial term in the denominator of equation (6) become rather difficult to calculate, we can 
approximate this PMF by using Stirling�s formula and obtain:  

.  

Approximation (7) is mostly useful to assess the right tail of the distribution of .  

When , however, follows a Geometric distribution, i.e. when , the sum of i.i.d 

Geometric random variables becomes a Negative Binomial distribution thus:10

.  

In this case, the PMF of the final recorded number of foreclosures  is:  

.  

where , i.e. the total observed number of foreclosures  has a distribution of 
Haight (1961), while the additional number of foreclosed homes beyond the initial level , i.e. the 
marginal impact of a domestic housing crisis, has a Lagrangian Generalized Negative Binomial 
distribution, as first named by Jain and Consul (1971).  

In fact, we can designate the likelihood for a complete elimination of foreclosed properties from a 
given metropolitan area when the branching process starts from a single foreclosure as 

. Then for , , and for , . When the branching 
process, however, starts from  infectious foreclosed properties (this is a more �natural� economic setting 
since there are almost always subprime mortgage delinquencies and foreclosure candidates, even in the 
most stable rural areas), then .  

In light of our prior introduction of the generalized power series distributions, since  is indeed a 
function of , we can also write it as  and realize that a BGW branching process that starts from a 

(4) 

(5) 

(6) 

(9) 

(8) 

(7) 
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single transmissible foreclosure will be completely eliminated with  for some  with a 
probability equals to the smallest root of . For instance, for the Geometric distribution 

, thus for , .  

We should further note here that any metropolitan area under investigation must be large enough to 
sustain the snowball effects of contagious foreclosures. If a local housing submarket is too small, the 
contagion effect will not have sufficient time to develop before the supply of potential foreclosures runs 
out, regardless of any regulatory intervention. Moreover, these miniature sporadic markets convey little 
economic importance to regulators and policymakers. We therefore disregard isolated and narrow rural 
areas and consider in our later empirical section only sizable metropolitan regions within the U.S. housing 
market.  

Bayesian Estimation of  
The mathematical literature provides several methods to infer  in a BGW branching process (in our 

context,  denotes the expected number of contagious foreclosed properties within the same metropolitan 
area in the subsequent time units). If we let  signify the total number of foreclosures up to and including 
time unit , accumulated from the initially recorded  foreclosures, then a Maximum Likelihood 
Estimator (MLE) of  given observation of the branching process up to some pre-determined time unit 

 yields:  

.  

Yanev (1975) shows that this MLE is consistent and asymptotically unbiased in the limit where  is 
very large. Since most metropolitan areas in the U.S. normally exhibit a large number of foreclosures, 
regardless of any housing crisis, this MLE can serve us well. Somewhat anticipated, when the arrival of 
new contagious foreclosures follows a Poisson distribution, for example, and when the historically 
recorded , i.e. when the branching process thus far is classified as critical, then the first two 
moments of  are:  

,  

which suggests that for a large enough initial number of foreclosures , the BGW foreclosure branching 
process should remain active for an extended period of time as  and . On the other hand, 

for a relatively modest , the foreclosure branching process would gradually degenerate since , 
although having a relatively high variance. In the latter case the forward-looking projection of the 
parameter  is sufficiently below unity, which prevents a �house of cards� phenomenon in light of mode 
zero among the arrivals of new foreclosures in the subsequent time units hence .  
 
A Confidence Interval for  

We can also deploy an alternative method to estimate  by using an upper 95% profile confidence 
interval, for instance, while further utilizing Monte Carlo simulations as described hereafter. This 
approach allows policymakers to examine the posterior probability that ; depending on this 
posterior likelihood, a regulatory intervention could be considered. In fact, to use this alternative 
estimation method we are only required to observe the initial number of foreclosures  and the total 
(accumulated along the time) number of foreclosed properties  in a given region. Within this framework, 
the likelihood function for  given  takes the form:  

,  

(10) 

(12) 

(11) 
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which corresponds to either the Borel-Tanner PMF in equation (6), in the case where the appearance of 
new foreclosures follows a Poisson distribution, or the Haight PMF in equation (9), in the case where the 
arrival of new foreclosures tracks a Geometric distribution.  

We may denote  as the prior distribution of  and simulate it through two representative 
disseminations: First, a Uniform distribution within the closed interval , i.e. , 
and second, a Normal distribution having a mean of 1.02 and standard deviation of 0.1, i.e. 

. Both of these prior distributions have means and medians equal to 1.02, as persistently 
recorded in our later empirical section across all subsamples.11 The Uniform prior distribution maintains 
all simulated data within a relatively narrow range as identified by most actual observations. The Normal 
distribution, however, is expected to generate less compact dissemination of simulated random numbers 
than the Uniform distribution, thus to allow for sporadic outliers beyond the closed interval . 
These disseminations can be generated through Monte Carlo computerized simulations by most statistical 
packages.  

We can now use the Bayes� formula and construct the posterior distribution of  given  up to a 

normalizing constant  (while it is not necessary to actually compute it as 
demonstrated in our later empirical section) as:  

.  

By minimizing the squared of errors, the mean of the posterior distribution yields a robust point estimate 
of  as:  

,  

after simulating large enough  estimates . At this stage of the analysis 
we can select a posterior confidence interval  for  according to identified regulatory needs 
with a specific  upper profile. In this general setting we require that 

 for a fixed , and if  but , 
then .  
 
The Duration of a Foreclosure Epidemic 

A duration analysis of a foreclosure epidemic assesses the distribution of the number  of time units 
(quarters of a year in our context) until a complete elimination of contagious foreclosed properties from a 
given metropolitan area.12 When the BGW branching process starts from a single foreclosure and when 

, i.e. when the branching process is classified as either subcritical or critical, Farrington and Grant 
(1999) show that the duration distribution function  satisfies the following recursive 
relation:  

,  

where  is the Probability Generating Function (PGF) of the new foreclosures in the 

successive time units. Nevertheless, when the BGW branching process starts from  foreclosed homes, 
this distribution function evolves to . In the case where the arrival of new 
foreclosures follows a Poisson distribution with mean  the duration distribution function is: 

,  

where  and  satisfies the recursive relation  

(13) 

(15) 

(14) 

(16) 
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.  

When the appearance of new contagious foreclosures in a given metropolitan area follows a 
Geometric distribution with mean  the duration distribution function is:  

,  

and when  the duration distribution function is attained by using L�Hôpital�s rule as:  

.  

In this case, the generating probabilities are:  

.   

In the next section we shall utilize the above derivations and examine both the length (the expected 
duration) and the depth (the scaled number of infectious foreclosed homes) during the aftermath of the 
foreclosure epidemic that took place in the U.S. from 2007 to 2009.  
 
EMPIRICAL INVESTIGATION 
 
Data Collection 

According to the U.S. National Bureau of Economic Research (NBER) the U.S. great recession began 
in December 2007 and ended in June 2009. This period was closely synchronized with the U.S. subprime 
mortgage crisis, which is commonly defined as the period of 2007�2009. During these years a major 
foreclosure epidemic hit numerous communities within the U.S., while only sporadic areas were able to 
avert this housing calamity.  

In this section we are interested in exploring the consequences of this foreclosure epidemic. We 
therefore collect data on local area unemployment rates from the Bureau of Labor Statistics (BLS). We 
assemble additional data on new foreclosure rates across 366 Metropolitan Statistical Areas (including 
Micropolitan Statistical Areas, Combined Statistical Areas, and New England City and Town Areas), as 
classified by and the U.S. OMB for the general use of Federal statistical activities. We shall refer to these 
regions as the 366 Statistical Areas (SA) hereafter.  

We cluster the new foreclosure records including the specific names of the areas, unique metro 
identification numbers, and flags that indicate whether these areas are part of the 100 largest U.S. metros 
from Local Initiatives Support Corporation (LISC), a partnership between the Foreclosure-Response and 
the MetroTrends organizations. These new foreclosure rates were collected, assessed, and adjusted to 
various economic and demographic parameters with the help of the Mortgage Bankers Association 
(MBA) and LPS Applied Analytics, formerly known as McDash Analytics, a vendor of loan performance 
data from the nation�s largest loan servicers.13  

Quarterly records of local area unemployment rates and new foreclosure rates (with accuracy of one 
hundredth of a percentage) are available for us from March 2010 until September 2013 with observations 
every March, June, September, and December, i.e. at the end of each quarter.14 All 366 SA contain 15 
time-series data points, and they are further categorized into three groups: the inclusive rates of 
foreclosures, the rates of foreclosures among prime mortgages, and the rates of foreclosures among 
subprime mortgages.  
  

(17) 

(18) 

(19) 

(20) 
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To isolate the foreclosures that are associated with the contagion effect, i.e. to remove the likely 
influence of the local area unemployment rates, we form  chain reactions along their 
respective 15 time-series data points of transmissible foreclosure rates by running the following 
regressions (all standard assumptions of cross-section-over-time regressions apply):  
 

, 

where  denotes the foreclosure rate at time t,  represents the local area unemployment rate at the 
previous time t-1, and  is a lagged interaction term between the unemployment and the 
foreclosure rates. Essentially, the term  serves here as a proxy for the contagion effect, because it 
measures how prior foreclosures affect later foreclosures in the same SA.15  

We verify that these regression models are statistically significant (they have sizeable F values, R2, 
adjustable R2, and highly robust coefficients). We also refute multicollinearity by examining their 
variance inflation factors (all well under 10). These 1,098 chain reactions now contain proxy 
measurements of contagious foreclosures in their corresponding SA. We provide summary statistics on 
the three subsamples of these contagious foreclosure rates in Table 1.  
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Methodology and General Analysis  
To enhance intuition and to allow computations of factorials in the model�s derivations, the computed 

rates of contagious foreclosures across the 366 SA in the U.S. are uniformly multiplied by a scaling factor 
of 100. This simple transformation introduces scaled numbers of contagious foreclosed properties. This 
scaling procedure, however, does not affect the Bayesian estimation of , which is insensitive to different 
scaling factors.16 These scaled figures serve us well in the following analyses since some SA naturally 
incorporate many more houses than others, and we cannot contrast the aftermath of a foreclosure 
epidemic across disproportionate regions through absolute quantities.  

Since our three subsamples (for the inclusive, prime, and subprime mortgage markets) contain 14 data 
points of contagious foreclosure rates for each of the 366 SA, we can now assess the progress of  using 
the Bayesian estimation in equation (10) along the 13 accessible time intervals; thus, each subsample 
reads  estimates of . Within the subsample of inclusive mortgages we detect that  
ranges between 0.9437 and 1.1626. Within the subsample of prime loan mortgages we find that  ranges 
between 0.9225 and 1.2041. Within the subsample of subprime loan mortgages we discover that  ranges 
between 0.8568 and 1.2058. These arrays help us to set in our later simulations the likely confidence 
intervals of .  

We also count how many of the 366 SA can be clearly classified as subcritical (arbitrarily defined as 
having their ) or supercritical (arbitrarily defined as having their ), while all 
the others are labeled as generally critical (with alternating ). Within the subsample of inclusive 
mortgages we detect only 1 (0.2%) subcritical SA, 133 (36.4%) critical SA, and 232 (63.4%) supercritical 
SA. Within the subsample of prime loan mortgages we find only 2 (0.5%) subcritical SA, 173 (47.3%) 
critical SA, and 191 (52.2%) supercritical SA. Within the subsample of subprime loan mortgages we 
discover 9 (2.4%) subcritical SA, 259 (70.8%) critical SA, and 98 (26.8%) supercritical SA.  

Thus far, the findings are rather striking. Although the U.S. core housing crisis is widely agreed to be 
confined to the years of of 2007�2009, towards the end of 2013 this foreclosure epidemic was still far 
from its conclusion. Across all three subsamples a clear majority of SA in the U.S. exhibited either critical 
or supercritical branching patterns, and only a tiny minority of the 366 SA in the U.S. conveyed distinct 
subcritical behavior in their scaled contagious foreclosures from the first quarter of 2010 until the end of 
the third quarter of 2013.  

At this phase, we need to examine the distributional properties of  and infer when to deploy the 
Poisson distribution and when to use the Geometric distribution for modeling contagious foreclosures. In 
Figure 1 we present the respective histograms of  in all three subsamples along with their corresponding 
statistical merits. It is evident that  is approximately Normally distributed with most estimates closely 
surrounding 1.02. The vast majority of estimates across all three subsamples appear within the closed 
interval . These statistical properties motivate our selections for the Uniform and Normal 
distributions underlying the point estimates and the confidence intervals hereafter.  

In this environment, both the Poisson and the Geometric distributions for modeling  are noticeably 

dominated by the parameter , since when ,  and 

. These approximations reveal higher probabilities for  yet lower likelihoods 

for all  within the Geometric dissemination when compared to the Poisson distribution. Therefore, 
the Geometric distribution for modeling  is valid only in the extreme subcritical branching processes, i.e. 
when  and when  exhibits substantial chances to diminish. The Poisson distribution, on the other 
hand, would be a preferable method for modeling  in all critical and supercritical branching processes 
and in moderate subcritical branching processes.  
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FIGURE 1 
DISTRIBUTIONS OF  IN THE THREE SUBSAMPLES (INCLUSIVE, PRIME, SUBPRIME) 

 

 

 

In Figure 2 we present three examples for the computations of the left tails of the Borel-Tanner 
distribution as expressed in equation (6) for three different SA. These cases are selected to illustrate how 
the distributions for the total number of foreclosures  may evolve under moderate subcritical, critical, 
and supercritical conditions, while all three SA have  initial scaled number of foreclosed properties 
as recorded in the second quarter of 2010, and  is nominated here merely based on the latest Bayesian 
estimate in the third quarter of 2013.  
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FIGURE 2 
THREE ECXAMPLES FOR THE LEFT TAILS OF THE BOREL-TANNER DISTRIBUTION

 

 

 

Regrettably, our subsamples are truncated at the end of the third quarter of 2013. Thus, although we 
do not possess ultimate records of , we can still compare these tails of distributions with the ad hoc 
actual readings of the aggregate numbers of foreclosures in the respective SA. Within the inclusive 
market and the SA of Ames, IA, which exhibits a subcritical branching process with , 
we observe . Within the prime loans market and the SA of Buffalo�Niagara Falls, NY, which 

displays a moderate supercritical branching process with , we perceive . 
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Within the inclusive market and the SA of Fairbanks, AK, which reveals a critical branching process with 
, we detect . We can recognize that the above tails of the Borel-Tanner 

distributions of  perfectly match the temporary readings of , where the subcritical process indeed 
attains the lowest reading of actual foreclosures, the critical process in fact presents an intermediate 
volume of foreclosures, and the moderate supercritical process truly reaches the highest number of 
contagious foreclosures by the third quarter of 2013.  

In Figure 3 we offer three examples for the calculations of the left tails of the Haight distribution as 
captured in equation (9). All three cases are collected from SA in Florida (one of the very few states that 
have experienced a significant recovery in their real estate submarkets). All three instances show robust 
subcritical branching processes, yet they are originated with different initial scaled number of foreclosed 
properties as recorded in the second quarter of 2010.  

The SA of Naples�Marco Island, FL, starts with  contagious foreclosures in the second 
quarter of 2010, , and . The SA of Cape Coral�Fort Myers, FL, begins 

with  contagious foreclosures in the second quarter of 2010, , and . 
The SA of Punta Gorda, FL, commences with  contagious foreclosures in the second quarter of 
2010, , and . Evidently, the subcritical process of Cape Coral�Fort Myers, 
FL, originates with the lowest number of foreclosed properties, and in addition it has the fastest rate of 
decay (hence the lowest  within this group), therefore the tail of its distribution starts to bend 
downward after only a few increments of . Naturally, this SA realizes the lowest actual reading for 

, when compared to the other two SA within this group.  
In Figure 4 we provide three examples for the computations of the right tails of the Stirling�s 

approximation to the Borel-Tanner distribution as stated in equation (7). As already stated, these are valid 
approximations when  is large enough, therefore we take all three cases from the subprime 
mortgages market where the initial scaled numbers of foreclosures  are relatively high, and therefore the 
branching processes have higher chances to progress to higher total volumes . As expected, all three 
right tails exhibit downward sloping convex curves.  

In Figure 5 we demonstrate the general behavior of the forward-looking first moments of  along 
with the respective second moments as postulated in equation (11) with a cluster of only critical 
branching processes having  selected from all three subsamples. For higher 
accuracy in these and the following tests we nominate the initial scaled numbers of contagious 
foreclosures  with two digits after the decimal points (as originally noted in our database). As observed 
across the three subsamples, for relatively low levels of  the projected means of  are well below unity, 
hence the contagious foreclosure branching processes are expected to gradually subside although having 
relatively higher variances. Conversely, for somewhat modest and high levels of  the projected means of 

 are converging to unity in addition to having lower variances, thus the contagious foreclosure branching 
processes are expected to persist for prolonged periods of time.  
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FIGURE 3 
THREE EXAMPLES FOR THE LEFT TAILS OF THE HAIGHT DISTRIBUTION 
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FIGURE 4 
THREE EXAMPLES FOR THE RIGHT TAILS OF THE STIRLING�S APPROXIMATION 
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FIGURE 5 
THE FIRST TWO MOMENTS OF  IN EQUATION (11) FOR CRITICAL BRANCHING 

PROCESSES 

 

 

Confidence Intervals for   
Thus far, we have noticed that only a negligible fraction of the 366 SA in the U.S. conveyed clear 

subcritical behavior (having their ) from the second quarter of 2010 until the third quarter 
of 2013. We have also recognized that much larger portions of these SA exhibited either obvious 
supercritical patterns (having their ) or approximated critical patterns (with alternating 

) within the same time frame. For these latter ambiguous SA policymakers might be interested to 
learn more about the overall trends of their housing submarkets, whether their respective economic 
conditions are indeed improving or deteriorating. Similar desire may hold for the other processes as well. 
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The latest estimates of  (at the end of the third quarter of 2013 in our sample) can provide some 
information on that, yet to regulators this might be insufficient. We therefore provide further statistical 
views on  by constructing both point estimates and confidence intervals around them.  

In Table 2 we present three examples (arranged in three separate panels). To assess the quality of our 
point estimates and confidence intervals hereafter we intentionally select the same three SA from Figure 
2 that represent subcritical, critical, and supercritical branching processes, as previously acknowledged by 
their corresponding . For each SA we nominate two prior disseminations  as either the 
Uniform distribution or the Normal distribution (the latter is slightly more scattered), both calibrated 
around the empirically observed means (and medians) of 1.02. We allow the computer to simulate for 
each test 5,000 random numbers.17  

TABLE 2 
THREE EXAMPLES FOR POINT ESTIMATES AND CONFIDENCE INTERVALS OF  

Panel A: Inclusive Market, Subcritical Branching Process, SA is Ames, IA, ,  
Test 
Number 

Prior Distribution  
Uniform / Normal 

Arrival of New Foreclosures 
Distribution (Equation No.) 

Point Estimate C.I. with  
  

   

1  Borel-Tanner � Equation (6) 0.9855  
2  Haight � Equation (9) 0.9854  
3  Borel-Tanner � Equation (6) 0.9865  
4  Haight � Equation (9) 0.9854  

   
  

Panel B: Prime Market, Supercritical Branching Process, SA is Buffalo � Niagara Falls, NY, ,  
Test 
Number 

Prior Distribution  
Uniform / Normal 

Arrival of New Foreclosures 
Distribution (Equation No.) 

Point Estimate C.I. with  
  

   

1  Borel-Tanner � Equation (6) 1.0055  
2  Haight � Equation (9) 1.0056  
3  Borel-Tanner � Equation (6) 1.0058  
4  Haight � Equation (9) 1.0056  

   
  

Panel C: Inclusive Market, Critical Branching Process, SA is Fairbanks, AK, ,  
Test 
Number 

Prior Distribution  
Uniform / Normal 

Arrival of New Foreclosures 
Distribution (Equation No.) 

Point Estimate C.I. with  
  

   

1  Borel-Tanner � Equation (6) 0.9914  
2  Haight � Equation (9) 0.9914  
3  Borel-Tanner � Equation (6) 0.9917  
4  Haight � Equation (9) 0.9918  

   

Once prior estimates of  are designated, we instate them in either the Borel-Tanner distribution 
in equation (6) or the Haight distribution in equation (9), as possible disseminations of the arrivals of new 
foreclosures. Derivations (6) and (9) entail further parametrization, thus, as earlier recorded, for the SA of 
Ames, IA we utilize  and , within the SA of Buffalo�Niagara Falls, NY we employ 

 and , and for the SA of Fairbanks, AK we appoint  and . 
We now have three panels, each containing four tests, with 5,000 possible estimates of . We select the 

 highest posterior density intervals (i.e. the  upper profiles in each 
cluster) and compute for each set of the 250 chosen (highly-probable) estimates of  the corresponding 
minimum, maximum, and average, which correspond to  and .  
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In panel A we present the results for the SA of Ames, IA. This SA has been classified earlier as 
subcritical in light of its . All four point estimates of  faithfully resemble this figure, 
while the respective confidence intervals provide further assurance that this SA is indeed a subcritical 
branching process. In panel B we display the results for the SA of Buffalo�Niagara Falls, NY. This SA 
has been labeled before as slightly supercritical due to its . Although all four point 
estimates are somewhat lower than this figure, they are all sufficiently above the critical threshold. The 
respective confidence intervals are satisfactorily above unity as well, which corroborates the overall 
supercritical direction of this SA. In panel C we stage the results for the SA of Fairbanks, AK. This SA 
has been previously categorized as critical in light of its . All four point estimates of 
closely resemble this figure (although marginally lower than 1). The respective confidence intervals 
provide further assurance that this SA is in fact a critical branching process. Although we deploy a large 
number of computer replications, the Monte Carlo simulations inherently include some variability, and 
therefore are subject to yielding slightly different findings with every new stochastic run.  
 
The Duration of a Foreclosure Epidemic 

We conclude our analyses by estimating the probable durations of the foreclosure epidemics across 
some of the 366 SA under study. We recall that the derivations of the duration distributions in equations 
(15)�(19) are applicable only for subcritical and critical branching processes, and that the Geometric 
distribution for modeling  is valid only in the more extreme subcritical branching processes.18 Therefore, 
to illustrate the computations of the probable durations of foreclosure epidemics we select three 
prominent examples as displayed in Figure 6.  
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FIGURE 6 
THREE EXAMPLES FOR THE DURATIONS OF FORECLOSURE EPIDEMICS
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We use the Poisson distribution for modeling  for the subcritical branching process at the SA of 
Abilene, TX, and the critical branching process at the SA of Bellingham, WA. We use the Geometric 
distribution for modeling  for the more extreme subcritical branching process at the SA of Modesto, CA. 
While the branching processes within the first two SA start with relatively low initial foreclosures,  
and , respectively, their corresponding  are fairly moderate. Thus, for these two SA the 
corresponding distributions of foreclosure epidemic durations do not converge so quickly. Conversely, 
the branching process at the third SA starts with a higher  initial number of foreclosures, yet its 
respective  is far lower than the first two instances. In the latter case, the distribution of possible 
durations of a foreclosure epidemic begins with negligible likelihoods in the first year, but then rapidly 
converges to much higher probabilities than the corresponding possible durations in the first two 
examples.  

SUMMARY AND POLICY DISCUSSION 

In this study we have analyzed the outcome of the foreclosure epidemic during the great recession of 
2007�2009. We have explored the ongoing progression of transmittable foreclosures across the 366 
metropolitan areas in the U.S. from the first quarter of 2010 until the end of the third quarter of 2013. For 
this purpose we have segregated proxy measurements for contagious foreclosures, and then developed 
and examined subcritical, critical, and supercritical branching processes for the different segments of the 
U.S. housing market.  

We have recognized that the U.S. foreclosure epidemic was far from concluding towards the end of 
2013, long after the period which the housing crisis is commonly defined as covering. We detected that, 
throughout the inspected period, the vast majority of the metropolitan areas in the U.S. can be classified 
as having either critical or supercritical processes; they have experienced harsh though fluctuating 
economic circumstances in their respective housing submarkets, while many of these submarkets 
continued worsening. The economic importance of these findings is quite robust across our datasets. 
Within the inclusive market sample, 65 out of the 232 supercritical processes are part of the largest 100 
U.S. metros. Within the prime-loans market sample, 60 out of the 191 supercritical processes are part of 
the largest 100 U.S. metros. Within the subprime-loans market sample, 21 out of the 98 supercritical 
processes are part of the largest 100 U.S. metros. These metropolitan areas have experienced lasting 
severe meltdown in their housing submarkets and therefore induce some regulatory intervention.  

In practice, a regulatory interference could block a potential foreclosure epidemic. Its objective would 
be to constantly maintain the average rate of contagious foreclosures  well below unity. There is, 
however, an optimal dosage of intervention when regulatory bodies and policymakers aim towards this 
goal. Too light interference might not be sufficient to terminate a foreclosure epidemic. Too aggressive 
interference would stop an infectious foreclosure epidemic, yet it could excessively harm nonprime 
mortgage borrowers who seek to become homeowners.19 To better understand the tradeoff at hand and to 
put the following policy discussion in the right context we briefly summarize hereafter a few milestones 
from the relevant legal literature.  

Meador (1982) and Schill (1991) detect a small yet consistent influence of state and local lending and 
foreclosure laws on mortgage interest rates. Clauretie (1987) focuses on the impact of state foreclosure 
laws on residential lending risk over the period 1980�1986 and finds that a judicial foreclosure 
requirement and a statutory right of redemption add significantly to mortgage risk, while anti-deficiency 
judgment statues preclude the amelioration of such risk. Pence (2006) studies the impact of state and local 
lending and foreclosure laws on the numbers and the scopes of mortgage originations and shows that 
mortgages are 3.5% larger when non-judicial foreclosure is permitted. Bostic et al. (2008) and 
Pennington-Cross and Ho (2008) both use state-border fixed effect models to measure the effect of 
predatory and abusive lending laws on the cost of credit. They find that these laws are associated with a 
modest increase in the cost of credit among fixed rate loans and a small decrease in the cost of credit 
among adjustable rate loans.  
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Mian, Sufi, and Trebbi (2011) study the non-judicial foreclosure process as an instrument for 
foreclosure rates to evaluate the impact of foreclosures on housing prices. They do not distinguish 
between prime and subprime loans and do not find a significant effect of foreclosure laws on mortgage 
terms in the late 1990s and early 2000s. Desai, Elliehausen, and Steinbuks (2013) analyze the effects of 
state bankruptcy asset exemptions and foreclosure laws on mortgage default and foreclosure rates across 
different segments of the mortgage market. The authors report that legal provisions are overall more 
influential on subprime and adjustable rate loans than on prime and fixed rate mortgage loans. More 
recently, Curtis (2014) explains that lender-favorable foreclosure laws and procedures are typically 
associated with more lending activity (both mortgage applications and originations) in the subprime 
market, yet they exhibit a lower impact on the prime market. On the other hand, this study reports that 
strong anti-predatory lending laws and slow foreclosure procedures are usually associated with less 
subprime activity.  

As these and other studies show, state and local lending and foreclosure laws that generally benefit 
more lenders at the expense of borrowers overall promote mortgage lending activity, mainly within the 
subprime market and across adjustable rate loans, but also in the prime market and amidst fixed rate 
mortgage loans. On one hand, these laws help low credit-score borrowers to obtain mortgages and to 
become homeowners. Yet, they also tend to amplify the foreclosure rates in the mortgage inclusive 
market and thus increase the systemic risk in the aggregate economy. These conflicting forces create a 
situation that is not necessarily socially preferable (assisting one group while jeopardizing the entire 
population).  

Conversely, mortgage lending activity tends to shrink under state and local lending and foreclosure 
laws that generally protect more borrowers while somewhat disadvantaging lenders, in light of a higher 
associated risk to the lenders. This reduced interest to provide mortgage loans typically impairs low 
credit-quality borrowers, precludes them from acquiring mortgage loans, and prevents them from 
becoming homeowners. However, this diminished mortgage market has higher credit quality, and thus 
exhibits lower systemic risk to the combined economy. Once again, these opposing dynamics are not 
necessarily socially desirable (hurting one group while protecting the entire population).  

Maintaining the average rate of contagious foreclosures  well below unity across the different 
metropolitan areas seems like a prudent goal of regulation. Achieving this target would depress new 
foreclosure rates and enhance stability in both the housing and the financial markets. Yet, vigorously 
preventing new foreclosures means denying mortgage applications from low credit-score applicants in the 
first place. Therefore, the objective to preserve  at all times may also bring, according to some 
views, some level of social injustice.  

The literature promotes several ideas that could mitigate the foreclosure contagion effect and would 
result in the least amount of market distortion, such as the use of financial instruments like home equity 
insurance (as discussed by Shiller and Weiss (1999)), or the �shared-responsibility mortgage� approach, 
which would automatically lower mortgage payments when home values decline. It is beyond the scope 
of this study, yet we recommend future lines of research to seek an optimal level of  that maximizes the 
wealth of both lenders and borrowers, promotes stability in the real estate market, and at the same time 
promotes social justice. This optimum level of  may be located in either equilibrium or disequilibrium 
resolutions.  
 
ENDNOTES 
 

1. The U.S. Department of Housing and Urban Development (2009) is one comprehensive report on 
these issues.  

2. Very few studies have attempted to explore the repercussions of the great recession. Among 
them, Molloy and Shan (2011) examine what happened to borrowers and their households after 
their mortgages were foreclosed during the recent U.S. housing crisis.  

3. To save space we do not aim to cover here the entire economic literature on bank foreclosures.  
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4. We largely dismiss housing prices and quantitative easing measures from our later empirical 
analyses since data on these matters is typically available only at the state or nation levels and not 
within the metropolitan areas, while the foreclosure contagion effect is greatly reduced at these 
broader levels.  
 

5. The authors comment that because housing markets are local and highly segmented, one would 
expect to find a stronger foreclosure contagion effect using micro-level data than within the state-
level aggregates. This motivates us to direct our analysis hereafter towards narrowed metropolitan 
areas.  

6. These findings, along with our own inspections, convince us to utilize time-series lags in our 
empirical analyses.  

7. Among others, the U.S. Conference of Mayors (2007) expresses the demand for an aggressive 
Federal response by local lenders.  

8. In the case where the arrival of new foreclosures follows a Bernoulli distribution, the number of 
time units that a housing crisis may last (until a complete elimination of foreclosures) in a given 
metropolitan area equals the total (accumulated) number of foreclosed houses in that region.  

9. In our later empirical investigation we shall clarify under what circumstances it is preferable to 
model  with either the Poisson distribution or the Geometric distribution.  

10. We recall that  in terms of the generalized power series distributions and express the 

probability with .  
11. Alternatively, these prior distributions can be tuned to have means and medians equal to 1, thus to 

become completely neutral to whether the foreclosure branching process is subcritical, critical, or 
supercritical. Clearly, other representative prior distributions are also feasible.  

12. Although this scenario seems highly unrealistic, it can be achieved if lenders would considerably 
tighten mortgage underwriting standards for an extended period of time and allow only the 
highest credit borrowers to acquire mortgage loans. This situation, however, has profound social 
implications as discussed in our policy debate.  

13. Li and White (2009), who also investigate the foreclosure contagion effect, also use this database 
of LPS Analytics, but over earlier years.  

14. BLS does not explicitly quote the local area unemployment rates across the 366 SA for the month 
of September 2013. To best assess these figures, we calculate the average unemployment rates of 
August and October 2013.   

15. Because data on raw foreclosure rates is available to us only from March 2010 (15 observations 
for each SA), throughout this trailed process we lose the first quarter of records and are left with 
data on contagious foreclosure rates from June 2010 (14 observations per SA). The Bayesian 
estimation of  in equation (10) hereafter commands the subtraction of the initial measure of 
contagious foreclosure rates and thus leaves us with 13 measurements of  within each SA. In 
light of this gradual reduction in the number of time-series estimates we do not extend any further 
the regression model in (21) to VAR system of equations. Nonetheless, these single time lags 
appear to be economically significant throughout our analyses.  

16. Essentially, both the numerator and the denominator in equation (10) are multiplied by the same 
scaling factor.  

17. Most statistical packages, including the Excel function , would generate Uniformly 
distributed random numbers within the default interval . To tune this range to any other 
interval  of our choice we need to use the simple transformation . 
The Normally distributed random numbers are appointed by using the Excel function 

.  
18. Clearly, for supercritical processes, with no regulatory intervention, the expected durations of 

foreclosure epidemics would converge to infinity.  
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19. Bernanke (2013) explains (on page 43) that he prefers the term �nonprime� over �subprime� to 
include Alt-A and other types of mortgagers who are also not up to the traditional standards of 
credit underwriting.  
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