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A new theory of term loans is proposed and proved in this paper. The algebraic formulae to compute the 
loan balances of popular term loans and their interest expenses are derived from the theory. Excel users 
can utilize the formulae in calculating tax savings on accrued interest in refinancing analysis without 
undue hardship. Furthermore, it is typically necessary to conduct a sensitivity or simulation analysis 
since key variables involved in financial decisions are often subject to uncertainty. The new formulae will 
make the use of an amortization schedule obsolete in computing interest expenses. The new method 
should be of great value in pedagogic settings, since computational tedium is replaced by a more 
intellectually stimulating effort to understand the logic behind the formulae. It is also indispensable for 
software engineers developing computer programs to solve application problems in these areas because 
the formula approach absolutely supersedes in numerical efficiency the traditional method based on an 
amortization schedule.  
 
I. INTRODUCTION 

 
The concept of generalized term loans (henceforth G-term loans for brevity) will be introduced in this 

work. Since the terminology is a new one, it is necessary to provide an expository discussion here. A 
generalized term loan is a term loan whose payments need not remain fixed during the term of a loan. The 
balance of a G-term loan might rise or decline prior to its maturity but it has to reach zero at maturity.1  

The G-term loan comprises all popular term loans utilized in business today, such as an ordinary term 
loan, a deferred term loan, an annuity due, a balloon loan, a bullet loan, and an interest-only loan.2 For 
exposition of popular term loans, see introductory finance texts such as Keown et al. (2010). The reason 
for grouping them into a new category is because a theory established for the group will hold true for any 
of its members.   
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This work is concerned with annual interest expenses when underlying loans are any one of the G-
term loans. The reason is that the assessment of tax savings on annual interest expenses is a critical factor, 
for instance, especially in mortgage refinancing analysis. The traditional method to compute the latter is 
to generate monthly interest expenses by using an amortization schedule and sum them up year by year to 
obtain the latter. Tax savings are computed by multiplying annual interest expenses by a firm’s tax rate. 
The traditional method of computing annual interest expenses by means of an amortization schedule is 
particularly laborious even aided by a spreadsheet program. The alternative method to be presented in this 
work develops the algebraic formulae to calculate interest expenses for all G-term loans. The algebraic 
formulae will be of great value in making financial decisions in bond refunding and lease or purchase, 
mortgage refinancing, and capital budgeting analysis. For examples, see respectively Keown et al. (2010), 
Chen (1997), and Harris and Pringle (1985).  
 A major advance in financial education in the last decade is the use of Excel in teaching introductory 
finance. Jackson and Staunton (2001) are early writers who recognized the value of Excel in financial 
education. However, its rapid acceptance in financial education clearly reflects the success of Principles 
of Finance with Excel by Benninga (2005) from Oxford University Press.3This work was followed by his 
Financial Modeling (2008) from MIT Press. Excel appears to have been well received by researchers 
in financial education and text writers. See Whitworth (2010). Further, researchers report that students 
whose instructors use Excel in introductory finance perform better than those whose instructors do not use 
Excel. See Cagle, Glasgo, and Hyland (2010). MacDougall and Follows (2006) conclude that students 
trained with Excel are more likely to be better managers because their understanding of subject matters is 
deeper. It appears that Excel is viewed as an effective tool of finance pedagogy.  
 The emergence of Excel in financial education is a highly timely development for the algebraic 
formula approach to interest computation. Since finance students today are competent Excel users, they 
can readily design an Excel worksheet to conduct refinancing analysis, for instance, by storing algebraic 
formulae on cells of  
their worksheet. 
 However, the use of an amortization schedule to compute accrued interest, especially in refinancing 
analysis, is not a viable option for even average Excel users. The reason is that transferring interest 
expenses from an amortization schedule to a refinancing worksheet is not a simple task. Consequently, 
the computational effort to obtain the net advantage of refinancing is bound to become mentally and 
physically overwhelming when the term of a mortgage loan is long.4  
 In this regard, it should be pointed out that a feature of refinancing analysis also shared by other 
capital budgeting problems is the need to follow up an initial analysis by a sensitivity analysis, since 
variables such as future interest and tax rates are subject to uncertainty. It is often necessary to investigate 
the range of the rates for which one decision is preferred to another by conducting sensitivity analysis or 
to investigate the shape of the relative frequency of accepting refinancing by conducting a simulation 
experiment when the new interest rate is by assumption stochastic, for instance. See Matsumoto et al. 
(2011) for an example of an Excel refinancing analysis as well as an Excel simulation analysis under the 
algebraic formula approach to interest computation. The traditional method based on an amortization 
schedule is ill-suited for the latter due to the lack of numerical efficiency. Whereas, with the algebraic 
formula approach, it is possible to conduct even a simulation experiment on an Excel worksheet. 
 With this background in mind, the purpose of the paper is to present a general theory to derive a loan 
balance formula for any term loan and the formula to compute annual interest accrued so that tax savings 
on the latter can be efficiently calculated. The paper is an analytical work that both finance students and 
finance professionals will find highly useful in enhancing computational efficiency. Although it neither 
addresses any deep philosophy in financial economics nor reports a novel empirical discovery in financial 
behavior, this work is a true contribution to refinancing analysis. 

The organization of the remainder of the paper is as follows. Section II formulates the rigorous 
definition of the G-term loans and sets forth the key property of G-term loans. Section III describes their 
amortization schedules of G-term loans and asserts its existence. Section IV presents the main theorem of 
this work. Section V relates how the loan balance formulae are derived. Section VI depicts exactly how 

68     Journal of Accounting and Finance vol. 13(3) 2013



the annual interest formulae are obtained. The final section VII is for the summary and concluding 
remarks.  

 
II. THE KEY DEFINITION AND PROPERTY 
 
 Let the monthly interest rate on a mortgage loan be i x 100% and n its term. Let , , , , and 

,  respectively denote its t-th beginning balance, the t-th payment, the t-th interest cost, the t-th 
amortization, and its ending balance of the period t.5  However, it should be kept in mind that the latter is 
also the t+1-th beginning balance of this loan. With the new notations introduced, the next step is to state 
the definition.  
 
A. The G-Term Loan 

It is necessary to specify the condition which makes a term loan a G-term loan in this work. The 
following is the mathematical condition required of a G-term loan. 

 
Definition 1: 
The G-loan is a term loan for which the following condition holds: 
 

  

 

1B = 1P
11+i( )

+ 2P
21+i( )

+ .....+ tP
t1+i( )

+ ...+ nP
n1+i( )
 (1) 

 
and the loan balance must reach 0 only at maturity♦6 

 Let us state the key property of G-term loans of interest next. 
 
B. The Key Property 
 The key property here is a necessary condition of a G-term loan. That is, if there is no amortization 
schedule, a loan cannot be called a G-term loan.  
 
Necessary Condition:  
A G-term loan must have its own amortization schedule♦ 
 
III. AMORTIZATION SCHEDULES  

 
The amortization schedule of an ordinary term loan is always discussed in a time value of money 

chapter in an introductory finance text. However, no discussion of other G-term loans is available in a 
standard finance text. It is necessary to describe the amortization schedule of the G-term loans for clarity. 
The reason is that the new theory of this work is built on the premise that all G-term loans have their own 
amortization schedule. In the remainder of this section, all amortization schedules will be presented. 
Additional comments will be provided whenever needed, especially for a G-term loan which is relatively 
unknown. Let us next describe that of the G-term loan per se.  

 
A. An n period i × 100% G-term loan next. 

The amortization schedule of a G-term loan consists of the six columns. They are a period subscript t, 
t-th loan balance, t-th payment, t-th interest cost, t-th amortization, and t-th ending balance which is also 
the beginning balance of the next period. The top row contains the label of each column. Therefore, the 
total number of rows is set to n+1 for all G-term loans except a deferred term loan. The total number of 
rows is n+ d+1 for the latter. 

Consider an arbitrary period whose period subscript is denoted by t. Its t-th payment   

 

tP  is not 
required to be a level constant for a G-term loan. Its t-th interest cost is the product of the t-th loan 
balance and the interest rate:   

 

ttC =iB . Its t-th amortization is obtained by subtracting the interest cost 
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from the payment: . The t+1-th balance is derived by subtracting the amortization from 
the beginning balance:   

 

t+1B = tB − tA . The entry in the last column of row t is .  
Let us consider the last row n. Since the loan balance   

 

n+1B  on the last row must reach 0, the payment 

  

 

nP  must be the sum of the loan balance   

 

nB  and the interest cost   

 

nC = niB . See Table 1 below for the 
amortization schedule. 
 

TABLE 1 
AN AMORTIZATION SCHEDULE OF A G-TERM LOAN 

 
t Beg. bal. PMT Interest Amort. End. bal. 
1   

 

1B    

 

1P    

 

1C = 1iB    

 

1A = 1P − 1iB    

 

2B = 1+ i( ) 1B − 1P  
2   

 

2B    

 

2P    

 

2C = 2iB    

 

2A = 2P − 2iB    

 

3B = 1+ i( ) 2B − 2P  
3   

 

3B    

 

3P    

 

33C =iB    

 

3A = 3P − 3iB    

 

4B = 1+ i( ) 3B − 3P  
4   

 

4B    

 

4P    

 

4C = 4iB    

 

4A = 4P − 4iB    

 

5B = 1+ i( ) 4B − 4P  
…. … … … … … 
t-1   

 

t-1B    

 

t-1P    

 

t-1t-1C =iB    

 

t-1A = t-1P − t-1iB    

 

tB = 1+ i( ) t-1B − t-1P  
t   

 

tB    

 

tP    

 

tC = tiB    

 

tA = tP − tiB    

 

t+1B = 1+ i( ) tB − tP  

t+1   

 

t+1B    

 

t+1P    

 

t+1C = t+1iB    

 

t+1A = t+1P − t+1iB    

 

t+2B = 1+ i( ) t+1B − t+1P  

… … … … … … 
n   

 

nB    

 

nP = nB + niB    

 

nnC =iB    

 

nA = nB    

 

n+1B = 0  
t=time subscript, Beg. bal.=beginning balance, PMT=payment, interest=interest costs,  
End. bal.=ending balance 

 
 
B. An n period i×100% ordinary term loan 
 An ordinary term loan requires all payments   

 

tP s to be fixed to a level constant P.  
It implies that its level payment P always exceeds the interest cost   

 

tiB for any t so the initial loan balance

  

 

1 B can be gradually reduced over the term n toward 0.  
 Set the   

 

tP  of  the equation in definition 1 equal to  P for all t, 1≤ t≤n, as follows: 
 

  

 

1B =
P

11+i( )
+

P
21+i( )

+ .... P
n1+i( )
. (2) 

 
Solving the above for P, the following result is in order: 
 

.

  

 

P =
i n1+i( )[ ]

n1+i( ) −1[ ] 1B . (3) 

 
The payment P is an important quantity because any entry of its amortization schedule can be generated, 
once its loan balance  and its payment P for each row are known.  See its amortization schedule below. 
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TABLE 2 
THE AMORTIZATION SCHEDULE OF AN N PERIOD I × 100% ORDINARY TERM LOAN 

 
t Beg bal PMT Interest Amort. End bal. 

1   

 

1B  P   

 

1iB    

 

1P-iB    

 

1+ i( ) 1B − P 

2   

 

2B  P   

 

2iB    

 

2P-iB    

 

1+ i( ) 2B − P 

… … … … … … 

t   

 

tB  P   

 

tiB    

 

tP-iB    

 

1+ i( ) tB − P 

… … … … … … 

n-1  P   

 

n-1iB    

 

n-1P-iB    

 

1+ i( ) n-1B − P  

n   

 

nB  P   

 

niB    

 

nP-iB = nB    

 

0 

t=time subscript, beg. bal.=beginning balance, PMT=payment, interest=interest costs,  
end. bal.=ending balance 

  

 

P =
i n1+i( )[ ]

n1+i( ) −1[ ] 1B  

 
 
C. A d period deferred n period i×100% term loan 

For simplicity, let us agree that d is a natural number much smaller than the term n of the loan.7 The 
amortization schedule of this loan is presented in Table 3.  

Inspect Table 3. There is no payment to be made during the initial d periods: =0 for t, 1≤ t≤d. The 
interest payment for t=1 is  . Let us determine the 2nd loan balance . Subtracting the latter for the P, the 
amortization is -  . Thus, the 2nd balance is . The remainder of the row can be generated in a similar 

way. The loan balance of the third row,   

 

3B  is   

 

2B
11+i( ) , which equals   

 

1B
21+i( ) . By induction, the t-th loan 

balance   

 

tB   can be expressed as the following: 
 

  

 

tB = 1B
t−11+i( )  (4) 

 
for t,  1≤ t ≤d. 
Substitute d+1 into t  of (4).  The loan balance 

 

d+1B  is the following:    
 

  

 

d+1B = 1B
d1+i( ) . (5) 

 
The latter 

 

d+1B  will be repaid by a level payment P in the next n months. This requires 
the following equation to hold: 
 

  

 

1B
d1+i( ) =

P
11+i( )

+
P

21+i( )
+ ...+ P

n1+i( )
. (6) 
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Solving (6) for the level payment P, 
 

  

 

P = 1B
d1+i( )

i n1+i( )[ ]
n1+i( ) −1[ ]

. (7) 

 
Once the level payment P is determined, the remaining n rows of the amortization schedule can be readily 
generated in a way similar to that of an ordinary term loan as shown in Table 3.  
 

TABLE 3 
THE AMORTIZATION SCHEDULE OF A D PERIOD  

DEFERRED N PERIOD I 

 

×100% TERM LOAN 
 

t Beg. bal. PMT Interest Amort. End. bal. 
1   

 

1B  0 
  

 

1iB
01+i( )    

 

1A = − 1B  
  

 

11+i( ) 1B  
2   

 

2B  0 
  

 

1iB
11+i( )    

 

2A = − 2B

 

 
  

 

21+i( ) 1B  
… … 0 … … … 
d-1   

 

d−1B  0   

 

1iB
d−11+i( )    

 

d-1A = - 1iB
d−11+i( )    

 

d1+i( ) 1B  
d   

 

dB  P   

 

diB    

 

nA = P − diB    

 

1+ i( ) dB − P  

… … … … … … 
d+t   

 

d+tB  P   

 

d+tiB    

 

d+ tA = P − d+ tiB    

 

1+ i( ) d+tB − P 

… … … … … … 
d+n   

 

d+nB  P   

 

d+niB    

 

nA = P − d+niB  

 

0 
t=time subscript, beg. bal.=beginning balance, PMT=payment, interest=interest costs,  
end. bal.=ending balance, 

  

 

P =
i n1+i( )[ ]

n1+i( ) −1[ ]
d1+i( ) 1B  

 
 
D. An n period  i × 100% annuity due 
 This is the most troublesome case for this work because the payment P for the first period is made at 
t=0 rather than at the end of each period. There exists no amortization schedule for this loan. For an 
annuity due to be a member of the G-term loan, it is necessary to create its amortization schedule for this 
loan.   
 To this end, let F denote the loan face value from the annuity due. Let P denote its level payment. Let
  

 

1B  be the loan proceeds from an annuity due, which a borrower receives from a lender at the beginning 
t=0. A lender must pre-collect the first payment P from the loan face value F of the annuity due at t=0 so 
that the following relationship must hold: 
 

  

 

1B = F − P. (8) 
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The second payment P must be made precisely at time point t=1, which is the beginning of the second 
period. Since time t is a continuum, the last moment of the previous period can be viewed as the first 
moment of the next period. Under this interpretation, there are n-1 payments left to be made after the 
borrower receives the loan proceeds  from the lender at time point t=0. The annuity due will be 
considered to be paid off at the beginning of the n-th period which is equal to the end of the n-1-th period. 
 The level payment P must be determined so that the present value of n-1 payments of P discounted at 
the interest rate of i equals the loan balance , for the first period which the borrower receives from the 
lender as follows:  
 

  

 

1B =
P

11+i( )
+

P
21+i( )

+ ...+ P
n−11+i( )

 (9) 

 
Solving the above for P, the following results: 
 

  

 

P =
i n−11+i( )[ ]

n−11+i( ) −1[ ] 1B . (10) 

 
Substituting the P of (10) above into (8), the face loan value F of the annuity due can be precisely 
determined as follows: 
 

  

 

F =

n1+i( ) −1[ ]
n−11+i( ) −1[ ] 1B . (11) 

 
In light of the preceding discussion, the following definition is in order: 
 
Definition 2: 
The amortization schedule of an n period i×100% annuity due is by stipulation the amortization schedule 
of an n-1 i × 100% ordinary term loan in this work♦ 
 
With this definition, it is possible to state that an annuity due has its own amortization schedule. Table 4 
presents the amortization schedule for the annuity due. 
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TABLE 4 
THE AMORTIZATION SCHEDULE OF AN N PERIOD I × 100% ANNUITY DUE 

 
t Beg. bal. PMT Interest Amort. End bal. 

1   

 

1B  P   

 

1iB    

 

1P-iB    

 

2B = 1+ i( ) 1B − P  

2   

 

2B  P   

 

2iB    

 

2P-iB    

 

3B = 1+ i( ) 2B − P  

… … … … … … 

t   

 

tB  P   

 

tiB    

 

tP-iB    

 

t+1B = 1+ i( ) tB − P 

… … … … … … 

n-1   

 

n-1B  P   

 

n-1iB    

 

n-1P-iB    

 

1+ i( ) n-1B − P = 0 

t=time subscript, beg. bal.=beginning balance, PMT=payment, interest=interest costs,  
end. bal.=ending balance     F=loan face value     

 

1B =loan proceeds from an annuity due 

  

 

P =
i n-11+i( )[ ]

n-11+i( ) −1[ ] 1B  

  

 

F =

n1+i( ) −1[ ]
n−11+i( ) −1[ ] 1B  

 
 
E. An n period i × 100% balloon loan 
 Consider an n period i×100% balloon loan. Let the level payment of a balloon loan be denoted by P. 
The level payment P of the balloon loan can be found by solving the following: 
 

  

 

1B =
P

11+i( )
+

P
21+i( )

+ .....+ P
t1+i( )

+ ...+ P
h1+i( )
  (12) 

 
where h is the term of an i×100% ordinary term loan. The following level payment results: 
 

  

 

P =

hi 1+i( )[ ]
h1+i( ) −1[ ] 1B . (13) 

 
The h is much greater than the term n of a balloon loan so that the level payment becomes low.  A 
borrower must pay the level payment P until the last year n.  On the last year n, he has to pay off the 
outstanding balance of the loan and the last interest. The balloon payment   

 

nP  must be set so that the 
present value of n-1 level payment of  P plus the present value of the balloon payment   

 

nP  discounted at 
the interest rate i is equal to the loan  amount   

 

1B  as implicit in the equation (1) of definition 1 as 
follows: 
 

  

 

1B =
P

11+i( )
+

P
21+i( )

+ ...+ P
n−11+i( )

+ nP
n1+i( )
. (14) 

74     Journal of Accounting and Finance vol. 13(3) 2013



Summing the geometric series on the right-hand side, and solving the resulting equation for P, the 
following results: 
 

  

 

nP =

h+11+i( ) − n1+i( )[ ]
h1+i( ) −1[ ] 1B . (15) 

 
The amortization schedule of the balloon loan is presented in Table 5. 
 

TABLE 5 
THE AMORTIZATION SCHEDULE OF AN N PERIOD I×100% BALLOON LOAN 

 
t Beg bal PMT Interest Amort. End bal. 

1   

 

1B  P   

 

nB    

 

1P-iB    

 

1+ i( ) 1B − P = 2B  

2   

 

2B  P   

 

2iB    

 

2P-iB    

 

1+ i( ) 2B − P = 3B  

… … … … … … 
t   

 

tB  P   

 

tiB    

 

tP-iB    

 

1+ i( ) tB − P = t+1B  
… … … … … … 
n-1   

 

n-1B  P   

 

n-1iB    

 

n-1P-iB    

 

1+ i( ) n-1B − P = nB  
n   

 

nB    

 

nP = nB + niB    

 

niB    

 

nnP -iB = nB    

 

n+1B = 0 

t=time subscript, beg. bal.=beginning balance, PMT=payment, interest=interest costs,  
end. bal.=ending balance, P=level payment,   

 

nP =balloon payment 
 
 
F. An n period i  ×  100% interest-only loan 

This is essentially identical to that of a balloon loan when the term n of a balloon is equal to h and the 
level payment P is set equal to the interest payment   

 

1iB . The balloon payment   

 

nP   is nothing but the face 
value of the loan plus the interest payment. An interest-only loan is often used in real estate transactions 
when the term n is not long. It is also referred to as a bond in investment if the term n becomes long such 
as 20 years. See Table 6 below. 
 

TABLE 6 
THE AMORTIZATION SCHEDULE OF AN IN PERIOD I × 100% INTEREST-ONLY LOAN 

 
t Beg bal PMT Interest Amort. End bal. 

1   

 

1B    

 

1iB    

 

1iB  0   

 

1B  

2   

 

1B  

 

1iB    

 

1iB  0   

 

1B  

… … … … … … 
t   

 

1B    

 

1iB    

 

1iB  0   

 

1B  
… … … … … … 
n-1   

 

1B    

 

1iB    

 

1iB  0   

 

1B  
n   

 

1B  
  

 

11+i( )B    

 

1iB    

 

1B  0 

t=time subscript, beg. bal.=beginning balance, PMT=payment, interest=interest costs,  
end. bal.=ending balance,  
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G. An n period  i  × 100% bullet loan 
The amortization schedule of this loan can be readily constructed from the d period deferred n period 

term loan by setting n equal to 0.  The upper half of the amortization schedule becomes the amortization 
schedule of the bullet loan with a minor modification on the d-th row. See Table 7 below: 
 

TABLE 7 
THE AMORTIZATION SCHEDULE OF AN N PERIOD I × 100% BULLET LOAN 

 
t Beg. bal. PMT Interest Amort. End. bal. 
1   

 

1B  0 
  

 

1iB
01+i( )    

 

− 1iB
01+i( )    

 

11+i( ) 1B  
2 

  

 

11+i( ) 1B  0 
  

 

1iB
11+i( )    

 

1-iB
11+i( )    

 

21+i( ) 1B  
… … 0 … … … 
n-1 

  

 

n−21+i( ) 1B  0 
  

 

n−2i 1+i( ) 1B    

 

n−2-i 1+i( ) 1B  

 

n−11+i( ) 1B  
n 

 

n−11+i( ) 1B  

 

n1+i( ) 1B    

 

n−1i 1+i( ) 1B  

 

n−11+i( ) 1B  0 

t=time subscript, beg. bal.=beginning balance, PMT=payment, interest=interest costs,  
end. bal.=ending balance, 

 
 
 It has been demonstrated that all G-term loans always have their own amortization schedule. This 
property will be used as the key premise in asserting the validity of the new theory of term loans on the 
section since the main theorem to be introduced next will be proved by using the amortization schedule 
for a G-term loan.  
 
IV.  A NEW THEORY OF G-TERM LOANS 

Let us state the main theorem of this work and establish its validity next.  
 

Theorem 1: 
For any t, 2≤t≤  n 
 

  

 

tB = t−11+i( ) 1B − t−21+i( ) 1P − t−31+i( ) 2P − ... − 11+i( ) t−2P − 01+i( ) t−1P  (16) 
 
and  
 

  

 

tB = tP
11+i( )

+ t+1P
21+i( )

+ ...+ n−1P
n−1( )− t−1( )1+i( )

+ nP
n− t−1( )1+i( )

♦ (17) 

 
A. Proof of the t-th loan balance   

 

tB  of (16): 
In proving the validity of the t-th balance   

 

tB  of (16) for any natural t, a proof technique known as 
mathematical induction will be utilized. The procedure involves establishing the validity of the   

 

tB  for 
some initial cases, for instance, t= 2, 3, and 4 in this case. Then, hypothesize the validity of the   

 

tB  of (16) 
for an arbitrary t, which is technically referred to as the inductive hypothesis. The critical step of proof is 
to show that the inductive hypothesis holds for the period, t+1. Then, the hypothesis holds true for any 
natural t by mathematical induction.  
 Observe the amortization schedule of a G-term loan in Table 1. From the ending balance column of 
row 1 of the amortization schedule of the G-term loan,  
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2B =
1

11+i( ) B −
1

01+i( ) P . (18) 
 
From the ending balance column of row 2 of the amortization schedule, 
 

  

 

3B = 11+i( ) 2B −
2

01+i( ) P . (19) 
 
Substitute the   

 

2B  of (18) into the   

 

2B  of (19), 
 

  

 

3B = 21+i( ) 1B − 11+i( ) 1P − 01+i( ) 2P . (20) 
 
From the ending balance column of row 3 of the amortization schedule,  
 

  

 

4B = 1+ i( ) 3B −
3

01+i( ) P . (21) 
 
Substitute the   

 

3B   of (20) into the   

 

3B   of (21). Then, 
 

  

 

4B = 31+i( ) 1B − 21+i( ) 1P − 11+i( ) 2P − 01+i( ) 3P . (22)  
 
In light of (20) for t=3 and (22) for t=4, the inductive hypothesis is that 
 

  

 

tB = t−11+i( ) 1B − t−21+i( ) 1P − t−31+i( ) 2P − ...− 01+i( ) t-1P . (23) 
 
 The key step of proof will be presented next. From the ending balance column of row t of the G-term 
loan amortization schedule in Table 1, 
 

  

 

t+1B = 1+ i( ) tB −
t

01+i( ) P . (24) 
 
Substitute the  of (23) into the  of (24) on the right-hand side as follows: 
 

  

 

t+1B = 1+ i( ) t−11+i( ) 1B − t−21+i( ) 1P − t−31+i( ) 2P − ...− 01+i( ) t−1P[ ]− tP  (25) 

 
which is equal to the following: 
 

  

 

t+1B =
1 t1+t( ) B − t−11+i( ) 1P − t−21+i( ) 2P − ...− 11+i( ) t−1P − 01+i( ) tP . (26) 

 
Replace the t+1 of equation (26) by the Greek letter τ. Then, the following result is in order:   
 

  

 

τB = τ -11+i( ) 1B − τ −21+i( ) 1P − τ −31+i( ) 2P − ...− 11+i( ) τ −2P − 01+i( ) τ -1P . (27) 
 
The (27) above is mathematically equivalent to the inductive hypothesis of (20). Thus, it has been shown 
that the t-th balance formula  of the inductive hypothesis holds true for any natural t, t=2,3,…,n by 
mathematical induction♦ 
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B. Proof of the t-th loan balance   

 

tB  of the (17): 
Multiply (1) of Definition 1 by   

 

t−11+i( ) . The following result is in order: 

  

 

t−11+i( ) 1B = t−21+i( ) 1P + t−31+i( ) 2P + ...+ 01+i( ) t−1P + tP
11+i( )

+ t+1P
21+i( )

+ ...+ nP
n−(t−1)1+i( )

. (28) 

 
Transfer the first summation term to the left. 
 

  

 

1
t−11+i( ) B − t−21+i( ) 1P − t−31+i( ) 2P − t−41+i( ) 3P − ...− 11+i( ) t−2P − 01+i( ) t−1P  

  

 

                                                           = tP
11+i( )

+ t+1P
21+i( )

+ ...+ n−1P
n−1( )- t -1( )1+i( )

+ nP
n− t−1( )1+i( )

 (29) 

 
In light of the (16), the left-hand side of the above equation is nothing but the t-th loan balance, itself. 
Thus, the right-hand side of the (29) above must be also  as follows: 
 

  

 

tB = tP
11+i( )

+ t+1P
21+i( )

+ ...+ n−1P
n−1− t−1( )1+i( )

+ nP
n− t−1( )1+i( )

♦ (30) 

 
Now that the validity of the new theory is rigorously established, a stage is set for deriving the algebraic 
formulae.  
 
IV. LOAN BALANCE FORMULAE 

 
Consider an n period i×100% ordinary term loan. The t-th balance formula   

 

tB   will be derived from 
the (16) of theorem 1 first. Then, the same formula   

 

tB  is again derived, this time from the (17) of 
theorem 1.  
 Consider an n period i ×100% term loan. Consider the t-th loan balance   

 

tB . Set all   

 

tP s of the (16) of 
theorem 1 equal to P. The (16) becomes the following: 
 

  

 

tB = 1B
t1+i( ) − t−21+i( ) P − t−31+i( ) P − ...− 01+i( ) P. (31) 

 
Summing up the future value of t-1 level payments of P in (31), the following results: 
 

  

 

tB = t−11+i( ) 1B −
t−11+i( ) −1
i

P. (32) 

 
Recall the level payment P of an ordinary term loan was presented in (3). Substitute the latter into (32). 
Then, 

  

 

tB = t−11+i( ) 1B −
i n1+i( )[ ]

n1+i( ) −1[ ] 1B

t−11+i( ) −1[ ]
i

. (33) 

 
Combine the two terms on the right-hand side into one, and the following loan balance formula is derived: 
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Theorem 2: 
 

  

 

tB = 1B

n1+i( ) − t−1( )1+i( ) 
  

 
  

n1+i( ) −1[ ]
♦ (34) 

 Let us derive the loan balance formula   

 

tB  by means of the (17) of theorem 1. Notice that t-1 level 
payments of P have been paid prior to the period t. Since there are n level payments of P in total, there 
remains n-(t-1) level payments of P left. Thus, the (17) becomes the following equation.  
 

  

 

tB =
P

t1+i( )
+

P
t+11+i( )

+ ...+ P
n−1− t−1( )1+i( )

+
P
n− t−1( )1+i( )

. (35) 

 
Summing the series, 
 

 

tB = P

n− t−1( )1+i( ) −1 
  

 
  

i n− t−1( )1+i( ) 
  

 
  

. (36) 

 
Substitute the P of (3) into the above. The following results: 
 

  

 

tB = 1B

ni 1+i( )[ ]
n1+i( ) −1[ ]

n− t−1( )1+i( ) −1 
  

 
  

i n−(t−1)1+i( )[ ]
. (37) 

 
The latter simplifies into the right-hand side of (34) of theorem 2. It has been clearly verified that both 
(16) and (17) result in the identical outcome♦ 

The t-th balance formulae of a deferred term loan, an annuity due, and a balloon loan can be readily 
derived from theorem 1. The loan balance formulae of a bullet loan and that of an interest-only loan are 
available from their amortization tables 6 and 7. Table 8 is the summary tables for all loan balance 
formulae.  
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TABLE 8 
N THE LOAN BALANCE FORMULAE 

 
Id Loan types the t-th loan balance formulae 
1 An ordinary term loan  

 

tB = 

  

 

1B

n1+i( ) − t−11+i( )[ ]
n1+i( ) −1[ ]

 

2 A deferred term loan  

 

tB = 
  

 

1B
t-1 1+i( )  

for  any t,   

 

1 ≤ t ≤ d 

  

 

1B
d1+i( )

n1+i( ) − t−d( )−11+i( ) 
  

 
  

n1+i( ) −1[ ]
 

for any t,   

 

d +1 ≤ t ≤ d + n 
3 An annuity due  

 

tB = 

  

 

1B

n−11+i( ) − t−11+i( )[ ]
n1+i( ) −1[ ]

 

4 A balloon loans  

 

tB  

  

 

1B

h1+i( ) − t−11+i( )[ ]
h1+i( ) −1[ ]

 

5 A bullet loan   

 

tB  
  

 

1B
t−11+i( )  

6 An interest-only loan   

 

tB    

 

tB = 1B  
 

  

 

tB =loan balance for the t-th month 

  

 

1B =the loan balance for t=1 
 F=the face value of an annuity due to apply for 
 i=interest rate per month 
 h=term of a loan to determine a monthly payment on a balloon loan 
 d=number of months deferred 
 n=term of a loan 

 
 
Now that all loan balance formulae are obtained, let us proceed to the final topic of how the annual 
interest formulae are derived.  
 
VI.  ANNUAL INTEREST FORMULAE 

 
Let us consider a mortgage loan. The term of a loan will be stated in  

months and years in this section since no generality in terminology appears to be relevant any longer in 
discussing annual interest tax savings on a mortgage loan. It is necessary to calculate annual interest 
expenses stipulating that taxes are paid at the end of a year.8 Let CI(L) denote the cumulative interest 
expenses for  the remaining L months  of the first year.  
 

  

 

CI(L) = tC
t=1

L
∑ . (38) 
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The first task is to compute the annual interest expense for the first year. Define CI(0) to be 0. Assume 
that the L does not exceed 12. The cumulative interest expense CI(L) for the first L months will be the 
following: 
 

∆CI(L,0)=CI(L)-CI(0). (39) 
 
If L is exactly 12, the above is the annual interest expense for the first year. Suppose that this mortgage is 
issued on the month  12-L  where L is less 12. The difference above is the annual interest expense for the 
remaining L months for the first year.  
 Consider another year where L is the last month of the previous year and M the ending month of this 
year. Let ∆CI(M,L) denote interest accrued from the L+1-th month to the M-th month. M is at least 
greater than L+1 where L represents the first month of a year and M the last month of the same year. 
Subtract the cumulative interest CI(L) for L months from the cumulative interest CI(M) for M months. 
Then,  
 

∆CI(M,L)=CI(M)-CI(L). (40) 
 
The above difference is the annual interest expense for this particular year.  
 For example, a mortgage loan is issued on September 1. Then L is 12-9=4. The total interest expenses 
accrued from September to December is the first-year interest accrued. The first year annual interest 
expense  is obtained by the following:  
 

∆CI(4,0)=CI(4)-CI(0) (41) 
 
where 
 

  

 

CI(4) = tC
t=1

4
∑  (42) 

 
and 
 

CI(0)=0. (43) 
 
The annual interest expenses next year should be given by the following: 
 

∆CI(16,4)=CI(16)-CI(4) (44) 
 
where  
 

  

 

CI 16( )= tC
t=1

16
∑  (45) 

 
and 
 

  

 

CI 4( )= tC
t=1

4
∑ . (46) 

 
The difference ∆CI(16,4) is the second-year annual interest expense.  
 Consider an ordinary term loan. Let us derive CI(L) in order to illustrate how the annual interest 
formula is derived. In light of (34) of theorem 2, 
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CI(L) = i

n1+i( ) − t−1( )1+i( ) 
  

 
  

n1+i( ) −1[ ]t=1

n
∑ . (47) 

 
Summing up the geometric series of (47) on the right-hand side:  
 

  

 

CI L( )= 1B
i L1+i( ) L − L1+i( ) −1[ ]

n1+i( ) −1[ ]
. (48) 

 
Then, in light of (40), 
 

  

 

∆CI M,L)( )=
i n1+i( ) M − L( )− M1+i( ) + L1+i( )[ ]

n1+i( ) −1[ ]
. (49) 

 
The interest formulae for the ordinary term loan, the deferred term loan, the annuity due, and the balloon 
of G-term loans can be derived in a similar way. The remaining two cases require a separate discussion.  

A bullet loan and an interest-only loan are special cases. Consider the former first.  The t-th interest 
cost   

 

tC  is   

 

i 1B
t−11+i( ) . Summing up the latter geometric series,  

 

  

 

∆CI 0, L( )= 1B
L1+i( ) −1[ ]. (50) 

 
which gives the annual interest expenses for the first year. The annual interest expenses for the later years 
are given by the following: 
 

  

 

∆CI L, M( )= 1B
M1+i( ) − L1+i( )[ ]. (51) 

 
 The interest-only loan is a simple case since the interest is a level constant i . The annual interest 
expense for the first year is merely the following: 
 

  

 

∆CI 0,L( )= i 1B L. (52) 
 
The annual interest expense for any remaining year are given by the following: 
 

  

 

∆CI M,L( )= i 1B M − L( ). (53) 
 
The M-L is 12 for a complete year. It is less than 12 when the last year is not a complete year. 

The following table 9 is the summary table of annual interest expense formulae for the four loans of 
our primary interest.  
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TABLE 9 
THE ANNUAL INTEREST FORMULAE 

 
Id Loan types Annual interest expenses 
1 An ordinary term loan 
   

 

∆CI(0,L) =  

  

 

1B

ni 1+i( ) L − L1+i( ) +1[ ]
n1+i( ) −1[ ]

 

   

 

∆CI(L, M) = 

  

 

1B

ni 1+i( ) M - L( )− M1+i( ) + L1+i( )[ ]
n1+i( ) −1[ ]

 

2 A deferred term loan 
 A deferred term loan 

  

 

∆CI 0, L( ) 
L>d 

  

 

1B
d1+i( )

ni 1+i( ) L - d( )− L−d1+i( ) +1[ ]
n1+i( ) −1[ ]

 

   

 

∆CI L, M( ) 
 

  

 

1B
d1+i( )

ni 1+i( ) M - L( )− L−d1+i( ) + M−d1+i( )[ ]
n1+i( ) −1[ ]

 

3 An annuity due 
   

 

∆CI(0,L) 

  

 

1B

n−1i 1+i( ) L − L1+i( ) +1[ ]
n1+i( ) −1[ ]

 

   

 

∆CI(L, M)  

  

 

1B

n−1i 1+i( ) M - L( )− M1+i( ) + L1+i( )[ ]
n1+i( ) −1[ ]

 

4 A balloon loan 
   

 

∆CI(O,L)  

  

 

1B

hi 1+i( ) L − L1+i( ) +1[ ]
h1+i( ) −1[ ]

 

   

 

∆CI M,L( ) 

  

 

1B

hi 1+i( ) M - L( )− M1+i( ) + L1+i( )[ ]
h1+i( ) −1[ ]

 

5 A bullet loan 
   

 

∆CI(O,L) 
  

 

1B
L1+i( ) −1[ ] 

   

 

∆CI M,L( ) 
  

 

1B
M1+i( ) − L1+i( )[ ] 

6 An interest-only loan 
   

 

∆CI 0,L( )   

 

i 1B L 
 ∆CI(M,L)   

 

i 1B M − L( ) 
  

 

∆CI(0,L)=cumulative interest expense up to month L from the beginning 
  

 

∆CI(L, M) = interest expenses accrued between month L and month M  
h=term of a loan to determine a monthly payment on a balloon loan 
d=number of months deferred 
n=term of a loan for all except a balloon loa 
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VII. SUMMARY AND CONCLUDING REMARKS 
 
This paper introduced a new category of term loans named G-term loans, which are nothing but 

popular term loans used in business. The definition of G-term loans in this work was rigorously 
formulated and its key property was stated. The paper then presented the main theorem of this work and 
proved its validity. The loan balance formulae for G-term loans were then derived from the theorem. 
Finally, the formulae to derive annual interest expenses were in turn derived from the loan balance 
formulae.  

The algebraic formulae are a powerful tool for computing annual interest expenses, and hence tax 
savings on the latter. They are needed in making financial decisions, especially in refinancing analysis as 
well as in other financial decisions such as lease or buy bond refunding decisions, and capital budgeting 
analysis. They are of great value for finance students learning how to conduct refinancing analysis in 
classroom settings. The reason is that nearly all finance students today are competent Excel users and they 
can store the new formulae to compute annual interest expenses in cells of an Excel worksheet without 
any problem. They can develop an Excel worksheet to conduct refinancing analysis under the algebraic 
formula approach.  Further, they can design an Excel model to conduct a sensitivity and simulation 
analysis of refinancing analysis on their laptop computers. In this regard, it should be kept in mind that 
many of these students are future financial decision makers who will utilize the new formulae in practice. 
Finally it is noted in passing that the algebraic formulae will be also needed by computer programmers 
engaged in designing efficient business software in these areas.  

There are several important implications to be stressed. The new formula approach necessitates a re-
examination of the traditional pedagogy of teaching interest computation based on an amortization 
schedule. An amortization schedule will continue to be the best way for students to understand the 
mechanics of how a loan is gradually paid off over the term of a loan. Hence, it has to be included in the 
time value of money chapter in introductory finance courses.  

However, they should not use the amortization schedule as a computational tool of calculating 
interest expenses because the amortization schedule method of interest computation is a grossly 
inefficient way to assess annual interest expenses needed in financial decisions. Further, keep in mind that 
refinancing analysis has to be typically repeated a number of times in practice since interest and tax rates 
are often viewed as stochastic and decision makers want a sensitivity and simulation analysis to be 
performed after inspecting the initial outcome from replacement analysis. Thus, computational burden is 
bound to become overwhelming under the amortization schedule method. 
 
ENDNOTES 
 

1. To expound on this point, if a loan payment is not sufficient in a certain period to cover its period interest 
due, the unpaid part of the accrued interest will be added to the outstanding balance of the loan without any 
penalty. Whereas, when a loan payment exceeds its period interest accrued, the loan balance will be 
reduced by the amount exceeding the accrued interest expense. 

2. Some of these terms are business jargon used by realtors, for instance. A bullet loan in this work is a loan 
which has no intermediate payment and whose face value and accrued interest must be paid at maturity. An 
interest-only loan pays its interest every period and the interest plus the principle at maturity. It is similar to 
a bond.  

3. The book seems to be also a commercial success in light of the fact that the second edition appeared 
recently. See Benninga (2011).  

4. In our view, students must experience at least once in an introductory finance course how to generate an 
amortization schedule, though it should no longer be used as a primary tool to calculate accrued interest, for 
instance mortgage refinancing analysis. 

5. The period here is either a year or a month. In refinancing a mortgage, a payment has to be paid monthly. 
So, a period t is a month t. 

6. The diamond ♦ is used as a terminator for emphasis.  
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7. The deferment period d could be shorter than 1. This often occurs when the closing date of a mortgage is, 
for example, on the 28th of the month and a lender wants to collect the mortgage payment on the first day 
of a month. A common practice is to increase the amount of the loan by adding the interest for the extra 
few days to the principal so that the mortgage payment is due exactly at the end of each month. This 
method is often used by lenders. For this reason, a deferred term loan is quite common.  

8. This is just for generality. In fact, in the United States, individual taxes are due in April.  
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