Fooled By Correlation: How Blind Acceptance of Correlation Dogma Destroys Diversification

Jeffry Haber Iona College

Ask any quantitative finance academic whether you should use prices (NAVs) or returns when calculating correlations and they will tell you that you can ONLY use returns. Using an example of a hypothetical data set, the correlation of prices is 1.00 and the correlation of the returns derived from these prices is .02. The question for any thinking person is "looking at the two series of data, first for prices and then for returns, do the numbers look extremely correlated (prices) or do they look like they are nearly perfectly random between the two series (returns)?"

INTRODUCTION

The cornerstone of portfolio construction is diversification, and the quantification of diversification is correlation. Correlation has been a mainstay of the investing and financial toolbox ever since the early days of modern portfolio theory. Correlation can be computed using prices (net asset values or NAVs) of the investment, or the related return streams. Any quantitative financial professional will tell you that you can ONLY use returns because prices are not independent and not stationary.

If the correlations calculated using prices and returns were similar, this would not be an issue. If the correlations are widely different, then it could be a serious issue. Some investments are added to portfolios based on their ability to act as a diversifier, and the statistic used to make this determination is correlation. If the correlation calculation did not accurately reflect the effect the investment would have on the portfolio then the investor could be making a mistake.

Given that diversification is important and that correlation is the measurement we have to work with, the question becomes "can there be a difference between the correlation that is calculated using the prices and the correlation calculated using returns, and if so, which is the superior basis to use?"

RESEARCH METHODOLOGY

This paper develops two streams of data for 120 observations, representing two investment options and the ending monthly prices for each. This is shown in Figure 1. Of the 120 observations, 119 are exactly the same between the two investment options (labeled A and B). The lone difference occurs in observation 90. Since 119 observations out of 120 are exactly the same, it is not surprising that the correlation between the two streams is 1.00.

Next, I derive the returns from these streams of prices. This is shown in Figure 2. This yields 119 observations. Of the 119 observations, 117 are the same. The differences occur in observations 89 and 90. What is the resulting correlation of these 119 observations, where 117 are exactly the same? Nearly

perfect NON-correlation (almost 0.00). This is the polar opposite from the correlation that was calculated using prices.

WHICH IS CORRECT?

We have answered the first question, can the correlations calculated using prices and returns from the same data set produce different results. The answer is yes, and as different as possible. The next question is "which is the superior correlation to use."

I submit that a reasonable person looking at both sets of data would come away feeling that the streams of data between both investment options (A and B) are very similar in the case of prices AND in the instance of returns. Further, I propose that a reasonable person would say that both situations represent highly correlated data sets.

On this basis, given this set of data, the prices are clearly the superior basis for calculating correlation.

LIMITATIONS

The data set used was not actual data. The problem in using actual data is in answering the question of which correlation calculation is superior is that real data is very messy - a reasonable person usually cannot look at the streams and come to a reasoned conclusion on which is superior. The advantage of this contrived data set is that a reasonable person can look at the data set and come to a conclusion on what they expect the correlation calculation to be.

CONCLUSIONS

The first conclusion I would draw is that it is worthwhile to compute correlation using both prices and returns. Where they are similar there is no difficult decision to be made. Where they are starkly different some thought has to go into in deciding which to utilize. Each investor will have to make their own decision about the tie-breaking procedure they will use.

The second conclusion is that the statistical benefits that come from using returns instead of prices (such as independence and stationarity) ignore that returns are derived from prices. There is no magic (aside from statistical) that comes from translating a price into a return using the formula:

FORMULA 1 FORMULA FOR RETURN

 $R_2 = P_2 P_1 / P_1$ Where R = Return, P = Price

The third conclusion is that this data set used streams of prices that were very consistent (little volatility). The findings may not apply to data that is more volatile.

Lastly, and perhaps most importantly, sometimes you have buck the majority and think for yourself. Just because some/many/most feel that there is only one way to do something, such as using returns in correlation calculations, always come to an independent decision. Don't follow the consensus when data says otherwise.

<u>Obs</u>	<u>A</u>	<u>B</u>	<u>Ob</u>	<u>s A</u>	<u>B</u>	<u>Obs</u>	<u>A</u>	<u>B</u>
1	100	100	41	704	704	81	4,956	4,956
2	105	105	42	739	739	82	5,204	5,204
3	110	110	43	776	776	83	5,464	5,464
4	116	116	44	815	815	84	5,737	5,737
5	122	122	45	856	856	85	6,024	6,024
6	128	128	46	899	899	86	6,325	6,325
7	134	134	47	943	943	87	6,642	6,642
8	141	141	48	991	991	88	6,974	6,974
9	148	148	49	1,040	1,040	89	7,322	7,322
10	155	155	50	1,092	1,092	90	7,689	4,900
11	163	163	51	1,147	1,147	91	8,073	8,073
12	171	171	52	1,204	1,204	92	8,477	8,477
13	180	180	53	1,264	1,264	93	8,900	8,900
14	189	189	54	1,327	1,327	94	9,346	9,346
15	198	198	55	1,394	1,394	95	9,813	9,813
16	208	208	56	1,464	1,464	96	10,303	10,303
17	218	218	57	1,537	1,537	97	10,818	10,819
18	229	229	58	1,614	1,614	98	11,360	11,360
19	241	241	59	1,694	1,694	99	11,927	11,927
20	253	253	60	1,779	1,779	100	12,524	12,524
21	265	265	61	1,868	1,868	101	13,150	13,150
22	279	279	62	1,961	1,961	102	13,808	13,808
23	293	293	63	2,059	2,059	103	14,498	14,498
24	307	307	64	2,162	2,162	104	15,223	15,223
25	323	323	65	2,270	2,270	105	15,984	15,984
26	339	339	66	2,384	2,384	106	16,783	16,783
27	356	356	67	2,503	2,503	107	17,622	17,622
28	373	373	68	2,628	2,628	108	18,503	18,503
29	392	392	69	2,760	2,760	109	19,429	19,429
30	412	412	70	2,898	2,898	110	20,400	20,400
31	432	432	71	3,043	3,043	111	21,420	21,420
32	454	454	72	3,195	3,195	112	22,491	22,491
33	476	476	73	3,355	3,355	113	23,616	23,616
34	500	500	74	3,522	3,522	114	24,796	24,796
35	525	525	75	3,698	3,698	115	26,036	26,036
36	552	552	76	3,883	3,883	116	27,338	27,338
37	579	579	77	4,077	4,077	117	28,705	28,705
38	608	608	78	4,281	4,281	118	30,140	30,140
39	639	639	79	4,495	4,495	119	31,647	31,647
40	670	670	80	4,720	4,720	120	33,230	33,230

FIGURE 1 CORRELATION OF PRICES (NAVs)

Obs	<u>A</u>	<u>B</u>	<u>Obs</u>	A	B	<u>Obs</u>	A	<u>B</u>
			40	0.05	0.05	80	0.05	0.05
1	0.05	0.05	41	0.05	0.05	81	0.05	0.05
2	0.05	0.05	42	0.05	0.05	82	0.05	0.05
3	0.05	0.05	43	0.05	0.05	83	0.05	0.05
4	0.05	0.05	44	0.05	0.05	84	0.05	0.05
5	0.05	0.05	45	0.05	0.05	85	0.05	0.05
6	0.05	0.05	46	0.05	0.05	86	0.05	0.05
7	0.05	0.05	47	0.05	0.05	87	0.05	0.05
8	0.05	0.05	48	0.05	0.05	88	0.05	0.05
9	0.05	0.05	49	0.05	0.05	89	0.05	-0.33
10	0.05	0.05	50	0.05	0.05	90	0.05	0.65
11	0.05	0.05	51	0.05	0.05	91	0.05	0.05
12	0.05	0.05	52	0.05	0.05	92	0.05	0.05
13	0.05	0.05	53	0.05	0.05	93	0.05	0.05
14	0.05	0.05	54	0.05	0.05	94	0.05	0.05
15	0.05	0.05	55	0.05	0.05	95	0.05	0.05
16	0.05	0.05	56	0.05	0.05	96	0.05	0.05
17	0.05	0.05	57	0.05	0.05	97	0.05	0.05
18	0.05	0.05	58	0.05	0.05	98	0.05	0.05
19	0.05	0.05	59	0.05	0.05	99	0.05	0.05
20	0.05	0.05	60	0.05	0.05	100	0.05	0.05
21	0.05	0.05	61	0.05	0.05	101	0.05	0.05
22	0.05	0.05	62	0.05	0.05	102	0.05	0.05
23	0.05	0.05	63	0.05	0.05	103	0.05	0.05
24	0.05	0.05	64	0.05	0.05	104	0.05	0.05
25	0.05	0.05	65	0.05	0.05	105	0.05	0.05
26	0.05	0.05	66	0.05	0.05	106	0.05	0.05
27	0.05	0.05	67	0.05	0.05	107	0.05	0.05
28	0.05	0.05	68	0.05	0.05	108	0.05	0.05
29	0.05	0.05	69	0.05	0.05	109	0.05	0.05
30	0.05	0.05	70	0.05	0.05	110	0.05	0.05
31	0.05	0.05	71	0.05	0.05	111	0.05	0.05
32	0.05	0.05	72	0.05	0.05	112	0.05	0.05
33	0.05	0.05	73	0.05	0.05	113	0.05	0.05
34	0.05	0.05	74	0.05	0.05	114	0.05	0.05
35	0.05	0.05	75	0.05	0.05	115	0.05	0.05
36	0.05	0.05	76	0.05	0.05	116	0.05	0.05
37	0.05	0.05	77	0.05	0.05	117	0.05	0.05
38	0.05	0.05	78	0.05	0.05	118	0.05	0.05
39	0.05	0.05	79	0.05	0.05	119	0.05	0.05

FIGURE 2 CORRELATION OF RETURNS