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Social networks have become an inseparable part of human life and processing them in an efficient manner 
is a top priority in the study of networks. These networks are highly dynamic and they are growing 
incessantly. Inspired by the concept of triadic closure, we propose a probabilistic mechanism to model the 
evolution of these dynamic graphs. Although triadic closure is ubiquitous in social networks and its 
presence helps forming communities, probabilistic models encapsulating it have not been studied 
adequately. 
 
We theoretically analyze our model and show how to bound the growth rate of some characteristics of the 
graph, such as degree of vertices. Leveraging our theoretical results, we develop a scheduling subroutine 
to process modifications of the graph in batches. Our scheduling subroutine is then used to speed up the 
state-of-the-art algorithms with negligible loss in their approximation guarantees. We demonstrate the 
applicability of our method by applying it to the densest subgraph and tri-densest subgraph discovery 
problem. Our theoretical findings are accompanied by extensive experimental evaluations. 
 
Keywords: triadic closure, network models 
 
INTRODUCTION 
 

Structural properties of social network distinguish them from other graphs. These properties include 
bounded degeneracy, heavy tailed degree distribution, high density of triangles. Various generative models 
have been suggested in the literature to study or explain these properties. The most celebrated of these 
generative models are the preferential attachment model10, the copying model37, or Chung-Lu random graph 
model 20. Each of these models explain some property of social networks but not all of them; see 18 for a 
comparative survey. Among all of these models, only a few have encapsulated an important property of 
social networks: triadic closure 45, 16, 15. 

Put simply, triadic closure is the tendency of a disconnected pair of users with a large common 
neighborhood to form connection. German sociologist George Simmel coined the term in 1908, suggesting 
that if there is a strong connection between A and B and there is a strong connection between A and C, then 
there must exist a strong or weak connection between B and C. 
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Triadic closure is a prominent ingredient for formation of modularity in networks42 and it has been 
shown that most of generative models such as Barabási-Albert model do not generate modularity without 
additionally enforcing triadic closure15. Thus, deep mathematical understanding of models explaining 
triadic closure is crucial. Nonetheless, the generative models based on triadic closure have not been 
theoretically analyzed, and little information about their growth rate or other properties is known. 

Among theoretical computer scientists, a new trend of studying social networks known as “distribution 
free models” has recently emerged47. Such studies leverage on specific properties of social networks to 
design tractable algorithms for expensive and in particular NP-hard problems. In this context the “c-closure” 
property was introduced by Fox et al24, and it sparked notable research35, 31, 34. A c-closed graph is a graph 
in which any two vertices v and u having a common neighborhood larger than c are connected. Problems 
such as listing all maximal cliques, or computing dense or sparse subgraphs, which are NP-hard in general 
are tractable for c-closed graphs24, 33. Distribution free models and in particular c-closure have an important 
limitation: they fall short in modeling dynamic graphs which are more realistic in the context of social 
networks. 

Inspired by Fox et al and subsequent work on c-closed graphs, our goal in this paper is to introduce a 
probabilistic dynamic model based on triadic closure, and we analyze it theoretically with the goal of 
designing algorithms. 

In particular, we seek answer to the following questions: 
1. How does triadic closure explain the evolution of dynamic graphs? 
2. Can we theoretically analyze the effect of triadic closure on the growth rate of degree of vertices 

of a dynamic graph? 
3. Can we use such bounds to design better algorithms for dynamic graphs (or to maintain 

previously calculated solutions)? 
We provide answers to the above question by (1) introducing the wedge picking model, a probabilistic 

model for dynamic graphs based on triadic closure (2) presenting a theoretical analysis of the wedge picking 
model and in particular the growth rate of its local properties such as the degree of each vertex (3) after 
verifying that the wedge picking model explains the evolution of an input dynamic graph and estimating 
the parameters of the model in a pre-processing phase, we use the above theoretical results to design a speed 
up subroutine which we call the rest and run strategy. We employ our proposed method to an important 
primitive of graph mining: densest subgraph discovery. 

The rest and run strategy works as an scheduling subroutine determining periods of “rest” and “run” 
for some optimization problems, thus improving their run time. The idea is to identify pre-calculated 
intervals for “resting” while theoretically ensuring that with high probability the quality of solution will not 
degrade by much. After the “rest” phase, we read a batch of updates and start the “run” phase in which we 
run the original algorithm. 

 
Related Work 

Study of probabilistic models for networks goes back to 1959 when pioneers of graph algorithms, Erdös 
and Rényi, introduced their model. Since Erdös–Rényi model does not explain most of the properties of 
real networks, other models like Watts–Strogatz model54 have been introduced. The Watts–Strogatz model 
captures the “six degree of seperation” in real network: despite having low average degree, most of vertices 
are reachable from each other via at most six hops. Their model also captures the existence of communities. 

Real world networks have been analyzed vastly with the motivation to identify properties distinguishing 
them from regular random networks. Such analysis can help design of generative models. For instance, 
Ugander et al. 52 analyzed social graph of active Facebook users, and reported properties such as: degree 
distribution, path length, component size, clustering coefficient, degeneracy, degree correlation, etc. 
Various models have been proposed for explaining different properties of such networks (see, e.g., 18]. 

Only to explain degree distribution and degree growth, researchers have suggested different models all 
describing the “rich gets richer” phenomenon: Barabási-Albert 55 suggest the preferential attachment model 
which generates graphs with power law degree distribution. Pennock et al.44 introduce graphs with a similar 
degree distribution: the Discrete Gaussian Exponential distribution. Amaral et al11 observe exponential cut 
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offs in electric power-grid graph. Among all of these models, Barabási-Albert model has been used widely 
and up to today particularly in the context of social networks. In this model a new vertex joins the network 
and it gets connected to any vertex u in the original graph with probability proportional to degree of u. 

Bianconi et al.15 observed that Barabási-Albert graphs do not contain modular components like real 
networks do. They suggested two models to incorporate triadic closure and thus to create modularity. In the 
first (simpler) model, a vertex u joins the network and it gets connected to a random vertex in the graph. 
For each of the next edges the end point is chosen through two rules: w.p. p it is added to a randomly chosen 
vertex, and w.p. 1 − p it is added to a randomly chosen vertex from neighbors of its neighbors (thus, 
enforcing triadic closure). In the second model, they introduce a fitness factor for vertices. The probability 
of choosing end points for new edges will be proportional to the fitness factor. Bianconi et al’s model 
generalizes Barabási-Albert’s as setting p = 0 and choosing fitness factor equal to degree makes the two 
models equivalent. 

A similar line of research uses triadic closure for link prediction: Huang et al30, 29 study formation of 
closed triads. Further they examine affects of formation of the third tie in a triad on the strength of the 
existing two ties28. They incorporate demographics and network topology for such predictions. Estrada et 
al4 use communicability distance functions to predict triadic closure. Romero and Kleinberg46 analyze a 
link copying regime which is similar to triadic closure. Another line of research studies estimating the 
number of triangles or other small patterns in a social network32, 36, 6, 17, 21, 7, 13 and the references within. 

Despite a long list of similar work53, 38, 43, 40, none of them presents a theoretical analysis of triadic 
closure based solely on graph topology, its affect on rate of degree growth and its possible algorithmic 
implications. 

We finish this introduction by highlighting our paper’s contribution together with a road map to read 
the paper. 

 
Our Contribution 

1. In Section 2, we introduce the wedge picking model which is a probabilistic generalization of c-
closure, tailored to dynamic graphs. We estimate the parameters of our model in a pre-processing 
phase. By doing so we are also able to assert whether the evolution of input graph fits into the 
wedge picking model. 

2. In section 3, we analyze the wedge picking model and bound degree growth (as well as tri-degree 
defined as the number of triangles on a vertex) for each vertex in the network. 

3. In Section 4, we present our algorithmic contribution which is the introduction of the rest and run 
strategy. This strategy can be employed as a scheduling subroutine to boost the efficiency of other 
algorithms with negligible effect on their accuracy. 
In Subsections 4.1 and 4.2 we show how to apply the rest and run strategy for approximating the 
densest subgraph and tri-densest subgraph. In particular, we incorporate the rest and run strategy 
in the algorithm of 22 and 50 and we show respectively the approximation ratio of 4(1 + 𝜀𝜀) and 
5(1 + 𝜀𝜀) for the modified algorithm. 

4. In Section 5, we complement our theoretical results by presenting experimental analysis. Our 
experimental analysis is twofold: (1) We compare the quality and the run time of our algorithms in 
comparison to previous work. We observe that the rest and run strategy can effectively improve the 
speed by a factor of 1000 on large data sets while not degrading the quality of the solution. (2) We 
run our algorithms on two types of data sets: (a) real-world social graphs whose evolution is 
synthetically generated by our model, and (b) dynamic real-world graphs of “Facebook wall posts” 
and “YouTube users” (see Table 2). We compare the run time and accuracy of algorithms for 
synthetic and organic evolution and observe similar results. Thus, we demonstrate the applicability 
of our model on real world social graphs. 
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THE MODEL 
 

In this section, we introduce our model. Let  𝐺𝐺𝑡𝑡 = 〈𝑉𝑉,𝐸𝐸𝑡𝑡〉 be an undirected dynamic graph with a fixed 
vertex set V and evolving edge set 𝐸𝐸𝑡𝑡  at time t.2 The assumption of fixed vertex set is without loss of 
generality as we can assume that all the vertices exist in the graph from the initial state, and those vertices 
added to the graph in the course of evolution, initially have degree zero. Therefore, we focus on how 𝐸𝐸𝑡𝑡  

evolves through time. 
Our model is a probabilistic generalization of c-closure. Thus, for any disconnected pair of vertices u 

and v we assume the probability that they become connected is a function of their common neighborhood 
denoted by 𝑑𝑑(𝑢𝑢, 𝑣𝑣). Since our experimental observations presented in Section 5 show a linear dependence, 
we assume this probability is 𝑎𝑎 𝑑𝑑(𝑢𝑢, 𝑣𝑣) + 𝑏𝑏, for some a and b (learned in a pre-processing phase). 

Edge removal occurs at a significantly lower rate compared to edge addition in social graphs. In our 
model, we choose uniform edge removal for deleting an edge, i.e., we pick a pair of connected vertices 
uniformly at random as a candidate for edge removal. Section 2.1 is devoted to a rigorous presentation of 
our model; this presentation has a combinatorial form which is simple and easy to analyze. 

Throughout this paper, we use the following notation: Let  𝐺𝐺𝑡𝑡 = 〈𝑉𝑉,𝐸𝐸𝑡𝑡〉 denote the graph with n vertices 
at time step t, 𝐺𝐺0 denote the initial graph, and 𝑁𝑁𝑡𝑡(𝑣𝑣) the set of neighbors of vertex v at time t, i.e., 𝑁𝑁𝑡𝑡(𝑣𝑣) =
{𝑢𝑢 ∈ 𝑉𝑉|(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑡𝑡}. We use 𝑁𝑁𝑡𝑡(𝑢𝑢, 𝑣𝑣) to denote the common neighborhood of vertices u and v at time t, 
i.e., 𝑁𝑁𝑡𝑡(𝑢𝑢, 𝑣𝑣) = 𝑁𝑁𝑡𝑡(𝑢𝑢) ∩ 𝑁𝑁𝑡𝑡(𝑣𝑣). Let 𝑑𝑑𝑡𝑡(𝑣𝑣) = |𝑁𝑁𝑡𝑡(𝑣𝑣)|, we denote the degree of vertex v at time t and 
𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) = |𝑁𝑁𝑡𝑡(𝑢𝑢, 𝑣𝑣)|. To denote an induced degree, induced neighborhood or induced common 
neighborhood in a subgraph 𝐺𝐺0, we mention the subgraph  𝐺𝐺0 

 explicitly and use the previous notation. We 
use the notation Γ𝑡𝑡(𝑣𝑣)  to denote the number of wedges with one end point v, i.e., the number of paths of 
length two starting at v, and we use Γ𝑡𝑡(𝑉𝑉) or Γ𝑡𝑡  for short to denote the total number of wedges. 

 
The Wedge Picking Model 

Let p, q and r be constants. Throw a fair coin to decide whether to follow rule (i) or (ii): 
(i) Pick a wedge, a path of length 2, uniformly at random. If the picked wedge is open (its 

endpoints are disconnected), then close it with probability p (place an edge between the 
endpoints). Note that one can pick a wedge uniformly at random by picking the midpoint vertex 
v with probability proportional to �𝑑𝑑𝑡𝑡(𝑣𝑣)

2 �, and then choosing the endpoints uniformly at random 
from 𝑁𝑁𝑡𝑡(𝑣𝑣). Furthermore, by picking a wedge uniformly at random the probability of placing 
an edge between a disconnected pair of vertices u and v will be proportional to 𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣). 

(ii) Pick a pair of vertices uniformly at random if they are disconnected, connect them with 
probability r, if they are connected, disconnect them with probability q. 

So, we conclude that a disconnected pair u and v gets connected with probability 0.5(𝑝𝑝 𝑑𝑑𝑡𝑡(𝑢𝑢,𝑣𝑣)
 Γ𝑡𝑡

+ 𝑟𝑟 1
�𝑛𝑛2�

). 

which is linear in d(u,v). Moreover, a connected pair becomes disconnected with probability  0.5(𝑞𝑞 𝑑𝑑𝑡𝑡(𝑢𝑢,𝑣𝑣)
 Γ𝑡𝑡

+

𝑟𝑟 1
�𝑛𝑛2�

) . 

 
Parameters of the Model 

In this section, we explain how we learn whether or not a graph is evolving through the wedge picking 
model and if it does how to estimate the parameters p, q and r. 
 
Learning p and r 

In a pre-processing phase, we track edge additions between time t and t + ∆ where time t is an initial 
time and parameter ∆ will be determined later. Let 𝑓𝑓𝑡𝑡(𝑥𝑥) be the number of disconnected pairs with x 
common neighbors in 𝐺𝐺𝑡𝑡  that become connected in Gt+∆, i.e., 𝑓𝑓𝑡𝑡(𝑥𝑥) = |{(𝑢𝑢, 𝑣𝑣):𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) = 𝑥𝑥, (𝑢𝑢, 𝑣𝑣) ∈
𝐸𝐸𝑡𝑡+∆\𝐸𝐸𝑡𝑡}|. For each 𝑥𝑥 ∈ ℤ+, we also calculate 𝑁𝑁(𝑥𝑥) = |{(𝑢𝑢, 𝑣𝑣):𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) = 𝑥𝑥, (𝑢𝑢, 𝑣𝑣) ∉ 𝐸𝐸𝑡𝑡}|.Using 
discussion in previous section, we know that the probability of edge addition is linear in 𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣); we 
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assume it is a𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) + b. We plot 𝑥𝑥 vs 𝑓𝑓(𝑥𝑥)
𝑁𝑁𝑡𝑡(𝑥𝑥)

, i.e., the probability of a pair of vertices with x common 
neighbors becoming connected. Using linear regression we fit a line ax + b to this plot and conclude: 

 
𝑓𝑓(𝑥𝑥)
𝑁𝑁𝑡𝑡(𝑥𝑥)

= 𝑎𝑎𝑎𝑎 + 𝑏𝑏 (1) 
 

We use the magnitude of coefficient of determination as a certificate for guaranteeing a linear relation. 
For a coefficient of at least3 0.6, we can conclude that the model follows our assumptions. Using the slope 
and intercept of the line then we can extract the values of p and r via Bayes’s rule. 
 
Theorem 2.1. If a graph evolves through the wedge picking model with parameters p and r. In Equation 1, 
we have:𝑎𝑎 = 𝑝𝑝𝑀𝑀

𝛤𝛤𝑡𝑡
 and 𝑏𝑏 = 𝑟𝑟 𝑀𝑀

�𝑛𝑛2�
, where M is the probability of an edge being added to the graph in [t,t +∆], 

 
i.e., 𝑀𝑀 = �𝑝𝑝 𝛤𝛤𝑡𝑡

𝑜𝑜

𝛤𝛤𝑡𝑡
� where 𝛤𝛤𝑡𝑡𝑜𝑜 is the number of open wedges at time t. 

 
Proof. Let A be the event that an edge is added to the graph any time in [t , t + ∆]. Using the definition of 
M and the union bound we will have P(A) ≈ M · |Et+∆ \ Et|. Let the B event that an edge is added to a pair 
with x common neighborhood. If the graph follows the wedge picking model, by Bayes rule we have: 

 

ℙ(𝐵𝐵|𝐴𝐴) =
ℙ(𝐴𝐴|𝐵𝐵)ℙ(𝐵𝐵)

ℙ(𝐴𝐴)  

= 𝑝𝑝 𝑁𝑁𝑡𝑡(𝑥𝑥) �
𝑥𝑥
𝛤𝛤𝑡𝑡

+ 𝑟𝑟 �
𝑛𝑛
2
�
−1
� / ℙ(𝐴𝐴) 

      = 𝑝𝑝 𝑁𝑁𝑡𝑡(𝑑𝑑) �𝑥𝑥
𝛤𝛤𝑡𝑡

+ 𝑟𝑟�𝑛𝑛2�
−1� / 𝑀𝑀 ·  |𝐸𝐸𝑡𝑡+∆ \ 𝐸𝐸𝑡𝑡|   

 
Thus, if we take ∆ so that  𝑁𝑁𝑡𝑡  and 𝛤𝛤𝑡𝑡𝑜𝑜/𝛤𝛤𝑡𝑡  (subsequently M) do not change significantly (see the while 

condition in Algorithm 2), and using the fact that ℙ(𝐵𝐵|𝐴𝐴) = 𝑓𝑓(𝑥𝑥)
|𝐸𝐸𝑡𝑡+∆ \ 𝐸𝐸𝑡𝑡|

 , we get 𝑓𝑓(𝑥𝑥)
𝑁𝑁𝑡𝑡(𝑥𝑥) = 𝑝𝑝 𝑀𝑀

𝛤𝛤𝑡𝑡
𝑥𝑥 + 𝑟𝑟 𝑀𝑀

�𝑛𝑛2�
 . 

Learning q. Our experimental analysis on real dynamic graphs suggests a very low rate of edge deletion 
compared to edge addition (see Section 5). In fact, in many of the dynamic graphs we have, edge deletion 
does not occur at all! Thus, instead of learning q’s value, we suffice to assert if p/q ≥ n, which will be useful 
later on in the analysis of degree and tri-degree growth (see Lemma 3.1). The proof of the following theorem 
is straightforward and left as an exercise to the reader. 
 
Theorem 2.2. For a graph evolving based on the wedge picking model we have: 
 
𝑝𝑝
𝑞𝑞
≥ |𝐸𝐸𝑡𝑡+∆ \ 𝐸𝐸𝑡𝑡|   

|  𝐸𝐸𝑡𝑡 \ 𝐸𝐸𝑡𝑡+∆|   
∙ 𝛤𝛤𝑡𝑡
𝛤𝛤𝑡𝑡
𝑜𝑜 ∙

|𝐸𝐸𝑡𝑡|
�𝑛𝑛2�

         (2) 

 
THEORETICAL ANALYSIS OF DEGREE GROWTH 
 

In real social networks, number of edges and open and closed wedges change rapidly, and keeping track 
of this change, or calculating them at each time step can be expensive. In this section, we show how to 
theoretically bound the growth rate of degrees in order to avoid expensive bookkeeping. 

The rate of evolution of the graph at time t is highly dependent on the clustering coefficient of Gt 

(defined as the ratio of total number of open and closed wedges). When the clustering coefficient is low, 
we expect a high rate of evolution; meaning not only the number of edges, open and closed wedges are 
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changing rapidly but also the probabilities of adding or removing edges are. These rapid changes make 
design of algorithms a daunting task. Nevertheless, in the next lemma (Lemma 3.1) we show that these 
probabilities do not change significantly in limited time. 

Let Γk
t (u) be defined as the number of paths of length k at time t having one end at u, and Γk

t (u,v) the 
number of paths between u and v at time t and of length k. For example, Γ1

t(u,v) = 1 if (u,v) ∈ Et and 0 
otherwise, Γ2

t(u,v) = dt(u,v), and Γ1
t(u) = dt(u). Since Γ2 is the most commonly used notation in our paper, 

we use Γ to refer to Γ2. Note that at any time step, closing or a wedge residing on a path would decrease the 
length of the path. Thus, Γi

t (u,v)  will depend on Γi+1
t (u,v),…, Γi+ᵟ

t (u,v) . Moreover, for an arbitrary k and 
any i < k by connecting two paths 𝛾𝛾1 ∈ Γ𝑡𝑡𝑖𝑖(𝑣𝑣) and   𝛾𝛾2 ∈ Γ𝑡𝑡𝑘𝑘−1−𝑖𝑖(𝑣𝑣) we can create a path of length k. We 
use dmax to denote the maximum degree of the graph Gt. We formalize the above observations, in the 
following lemma: 
 
Lemma 3.1. For any u,v ∈ V and 𝛿𝛿 ≤  𝑒𝑒Γ𝑡𝑡  /(2𝑝𝑝𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚), 𝑞𝑞 =  𝑜𝑜(𝑝𝑝/𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚),   and 𝑟𝑟 ≤ (𝑛𝑛

2

Γ 𝑡𝑡
) 𝑝𝑝, with 

probability 1 − o(1) we have: 
 
𝔼𝔼[𝑑𝑑𝑡𝑡+𝛿𝛿(𝑢𝑢, 𝑣𝑣) − 𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣)] ≤ 4𝛿𝛿 𝑑𝑑𝑡𝑡(𝑢𝑢)𝑑𝑑𝑡𝑡(𝑣𝑣)

Γ𝑡𝑡
  (3) 

 
Proof. For simplicity we first assume that we have no edge deletion. We will take care of the deletions later. 
To warm up, consider the probability ℙ[𝑑𝑑𝑡𝑡+1(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣)  >  0] there are two ways to add to 𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣): 
(1) by closing only one wedge placed on a path of length three between u and 𝑣𝑣, and there are two ways of 
doing so (rule (i)), (2) by adding an edge between 𝑤𝑤 ∈ 𝑁𝑁𝑡𝑡(𝑣𝑣) and u or vice versa (rule (ii)). 
 

Thus, ℙ[𝑑𝑑𝑡𝑡+1(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣)  >  0]  ≤  2Γ𝑡𝑡3(𝑢𝑢, 𝑣𝑣)𝑝𝑝/ Γ𝑡𝑡  +  ( 𝑑𝑑𝑡𝑡(𝑢𝑢)  +  𝑑𝑑𝑡𝑡(𝑣𝑣) )𝑟𝑟 /𝑛𝑛2 , equivalently: 
𝔼𝔼[𝑑𝑑𝑡𝑡+1(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) ]  ≤  2Γ𝑡𝑡3(𝑢𝑢, 𝑣𝑣)𝑝𝑝/ Γ𝑡𝑡  +  ( 𝑑𝑑𝑡𝑡(𝑢𝑢)  +  𝑑𝑑𝑡𝑡(𝑣𝑣) )𝑟𝑟 /𝑛𝑛2 . 

We now consider the general case of 𝛿𝛿 steps: 
 

𝔼𝔼[𝑑𝑑𝑡𝑡+𝛿𝛿(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣)] = �𝔼𝔼[𝑑𝑑𝑡𝑡+𝑖𝑖(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡+𝑖𝑖−1(𝑢𝑢, 𝑣𝑣)] = �ℙ[creating a wedge at 𝑡𝑡 + 𝑖𝑖]
𝛿𝛿

𝑖𝑖=1

𝛿𝛿

𝑖𝑖=1

 

 
FIGURE 1 

THE EVOLUTION OF VERTICES’ DEGREE GROWTH THROUGH TRIADIC CLOSURE 
 

                                                   
After three steps, a path of length 5 between u and v can turn to a wedge between them applying rule (i) (below 
picture); or alternatively two disjoint paths can turn to a wedge between u and v by applying rules (i) and (ii) (top 
picture). The order of edges being added is: red, blue, green. 
 



80 Journal of Strategic Innovation and Sustainability Vol. 16(3) 2021 

Note that creating a wedge at time t + j is possible by closing wedges (applying rule (i)) on a path which 
has length j + 2 at time t. Having rule (ii) in our hand, we can create new paths of length j at time t by 
placing an edge between a path of length i in  𝛤𝛤𝑡𝑡𝑖𝑖(𝑢𝑢) and a path of length j − 1 − i in  𝛤𝛤𝑡𝑡

𝑗𝑗−𝑖𝑖−1(𝑣𝑣)  . Thus, the 
original expectation is bounded by: 
 

�
𝑑𝑑𝑡𝑡+𝑖𝑖(𝑣𝑣) + 𝑑𝑑𝑡𝑡+𝑖𝑖(𝑢𝑢)𝑟𝑟

𝑛𝑛2

𝛿𝛿

𝑖𝑖=1

+ 2𝛤𝛤𝑡𝑡+13 (𝑢𝑢, 𝑣𝑣)
𝑝𝑝
𝛤𝛤𝑡𝑡+𝑖𝑖

   . 

. 
We now bound the first and second term of the sum: 

 
∑ 𝑑𝑑𝑡𝑡+𝑖𝑖(𝑣𝑣)+𝑑𝑑𝑡𝑡+𝑖𝑖(𝑢𝑢)𝑟𝑟

𝑛𝑛2
𝛿𝛿
𝑖𝑖=1 ≤ 𝛿𝛿𝛿𝛿(𝑑𝑑𝑡𝑡(𝑣𝑣)+𝑑𝑑𝑡𝑡(𝑢𝑢))(1+𝛿𝛿/𝑛𝑛)

𝑛𝑛2
  (4) 

  
𝛤𝛤𝑡𝑡+13 (𝑢𝑢, 𝑣𝑣) ≤ ∑ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗𝛿𝛿
𝑖𝑖=1 �𝑑𝑑𝑡𝑡(𝑢𝑢)𝑑𝑑𝑡𝑡(𝑣𝑣) 𝑝𝑝

𝑗𝑗𝜅𝜅(2+𝑗𝑗)

𝛤𝛤𝑡𝑡
𝑗𝑗 + (𝑑𝑑𝑡𝑡(𝑢𝑢)+𝑑𝑑𝑡𝑡(𝑣𝑣)) 2𝑟𝑟

𝑗𝑗

𝑛𝑛2𝑗𝑗
� (5) 

 
where 𝜅𝜅(2 + 𝑗𝑗) is the number of ways a path of length 2 + 𝑗𝑗 can be turned into one wedge by closing 𝑗𝑗 
wedges consecutively. And 𝛤𝛤𝑡𝑡  is the total number of wedges at time t. 

It is an easy counting problem to see 𝜅𝜅(2 + 𝑗𝑗) = (𝑗𝑗 + 2)!. Note that for any 𝑡𝑡,𝛤𝛤𝑡𝑡 ≥ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚2 , and for each 
𝑗𝑗, 𝛤𝛤𝑡𝑡

2+𝑗𝑗(𝑢𝑢, 𝑣𝑣) ≤ 𝑑𝑑𝑡𝑡(𝑢𝑢)𝑑𝑑𝑡𝑡(𝑣𝑣)𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗  and  𝛤𝛤𝑡𝑡

𝑗𝑗(𝑢𝑢) ≤ 𝑑𝑑𝑡𝑡(𝑢𝑢)𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 , where 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  is maximum degree at 𝑡𝑡. Note 

that 𝑝𝑝
𝑗𝑗𝑗𝑗!

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 ≤ (𝑝𝑝𝑝𝑝/𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚)𝑗𝑗. Under the assumption that 𝛿𝛿 ≤ 𝑒𝑒Γ𝑡𝑡/2𝑝𝑝𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚   we can simplify Equation 5 to get: 

 
∑ 𝛤𝛤𝑡𝑡+𝑖𝑖3 (𝑢𝑢, 𝑣𝑣) ≤ 𝑑𝑑𝑡𝑡(𝑢𝑢)𝑑𝑑𝑡𝑡(𝑣𝑣)∑ ∑ (𝑗𝑗 + 1)𝑘𝑘𝑗𝑗 ,     𝑘𝑘 ≤ 1/2.𝑖𝑖

𝑗𝑗=1
𝛿𝛿
𝑖𝑖=1

𝛿𝛿
𝑖𝑖=1  (6) 

 
Thus, as long as 𝑟𝑟 ≤ (𝑛𝑛2/𝛤𝛤𝑡𝑡)𝑝𝑝 (consistent with our experiments) we have: 
 
𝔼𝔼[𝑑𝑑𝑡𝑡+1(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) ] ≤ 𝑑𝑑𝑡𝑡(𝑢𝑢)𝑑𝑑𝑡𝑡(𝑣𝑣)

𝛤𝛤𝑡𝑡
(4𝛿𝛿) . (7) 

 
We now show that our initial assumption is not restrictive us as long as 𝑞𝑞 = 𝑜𝑜( 𝑝𝑝

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
). In fact we can show 

that with probability 1 − o(1), no edge deletion will occur in time 𝛿𝛿 ≤  𝑒𝑒𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚/𝑝𝑝: 
 

ℙ(at least one edge is deleted ) ≤�𝑞𝑞�
1
𝑛𝑛2

𝑢𝑢,𝑣𝑣

𝛿𝛿

𝑡𝑡=1

 

  ℙ(at least one edge is deleted ) ≤  𝛿𝛿𝛿𝛿/𝜔𝜔(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚)  ≤  𝑜𝑜(1)      
 

Having Lemma 3.1, for each 𝑣𝑣 ∈ 𝑉𝑉 , we can now bound the rate of its degree or tri-degree (defined 
later) growth. 

 
Degree of a Vertex 𝑢𝑢 ∈ 𝑉𝑉 

Consider and arbitrary vertex 𝑢𝑢 ∈ 𝑉𝑉 , the following lemma bounds the rate of the growth of u’s degree 
in the wedge picking model: 

 
Lemma 3.2. Let 𝛿𝛿 ≤ 𝑒𝑒Γ𝑡𝑡/2𝑝𝑝𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑞𝑞 = 𝑜𝑜(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1 )𝑝𝑝 , for any 𝑢𝑢 ∈ 𝑉𝑉𝑡𝑡: 
 
𝔼𝔼[𝑑𝑑𝑡𝑡+1(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) ] ≤ 𝛿𝛿 �2𝑝𝑝 𝛤𝛤𝑡𝑡(𝑢𝑢)

𝛤𝛤𝑡𝑡
+ 𝑟𝑟 1

𝑛𝑛
�  (8) 
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where 𝛤𝛤𝑡𝑡(𝑢𝑢) is the number of wedges having one endpoint equal to  𝑣𝑣, 𝑖𝑖. 𝑒𝑒. ,𝛤𝛤𝑡𝑡(𝑢𝑢) = ∑ 𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣)𝑣𝑣∈𝑉𝑉 . 
 
Proof. Let |𝐸𝐸𝑡𝑡| = 𝑚𝑚𝑡𝑡, we first employ the Cauchy Schwarz inequality to show that 𝛤𝛤𝑡𝑡/𝑚𝑚𝑡𝑡 ≥ (1/2)(𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 −
1) 
 
𝛤𝛤𝑡𝑡 = ∑ 𝑑𝑑𝑡𝑡2(𝑣𝑣)−𝑑𝑑𝑡𝑡(𝑣𝑣)

2
, ∑ 𝑑𝑑𝑡𝑡2(𝑣𝑣)𝑣𝑣∈𝑉𝑉 ≥ (∑ 𝑑𝑑𝑡𝑡(𝑣𝑣)𝑣𝑣∈𝑉𝑉 )2

𝑛𝑛𝑡𝑡
;𝑣𝑣∈𝑉𝑉  thus 2Γ𝑡𝑡  +  𝑚𝑚𝑡𝑡  ≥  𝑚𝑚𝑡𝑡

2/𝑛𝑛𝑡𝑡 

𝔼𝔼[𝑑𝑑𝑡𝑡+1(𝑢𝑢, 𝑣𝑣) −  𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) ] ≤  � 𝔼𝔼[𝑑𝑑𝑡𝑡+𝑖𝑖(𝑢𝑢) −  𝑑𝑑𝑡𝑡+𝑖𝑖−1(𝑢𝑢) ]
𝛿𝛿

𝑖𝑖=1
 

                                              ≤�� 𝑑𝑑𝑡𝑡+𝑖𝑖−1(𝑢𝑢, 𝑣𝑣)
𝑝𝑝
𝛤𝛤𝑡𝑡

+
𝛿𝛿 ∙ 𝑟𝑟
𝑛𝑛𝑢𝑢∈𝑉𝑉

𝛿𝛿

𝑖𝑖=1

 

 
Employing Lemma 3.1: 
 

�� 𝑑𝑑𝑡𝑡+𝑖𝑖−1(𝑢𝑢, 𝑣𝑣) ≤
𝑢𝑢∈𝑉𝑉

𝛿𝛿

𝑖𝑖=1

�� 𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣) +
4(𝑖𝑖 − 1)𝑝𝑝𝑝𝑝(𝑢𝑢)𝑑𝑑(𝑣𝑣)

𝛤𝛤𝑡𝑡𝑢𝑢∈𝑉𝑉

𝛿𝛿

𝑖𝑖=1

 

                               ≤ 𝛤𝛤𝑡𝑡(𝑣𝑣)𝛿𝛿 + �
4(𝑖𝑖 − 1)𝑝𝑝𝑝𝑝(𝑢𝑢)𝑑𝑑(𝑣𝑣)

𝛤𝛤𝑡𝑡

𝛿𝛿

𝑖𝑖=1
 

 
Having 𝑑𝑑𝑡𝑡(𝑣𝑣) ≤ 𝛤𝛤𝑡𝑡(𝑣𝑣) and  𝛤𝛤𝑡𝑡

𝑚𝑚𝑡𝑡
≥ 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 − 1 , we get 

 

� � 𝑑𝑑𝑡𝑡+𝑖𝑖−1(𝑢𝑢, 𝑣𝑣)
𝑢𝑢∈𝑉𝑉

𝛿𝛿

𝑖𝑖=1
≤ �

𝑝𝑝
𝛤𝛤𝑡𝑡
� 𝛤𝛤𝑡𝑡(𝑣𝑣)�1 + �

𝛿𝛿
2
� �

4𝑝𝑝𝑝𝑝(𝑣𝑣)𝑚𝑚𝑡𝑡

𝛤𝛤𝑡𝑡𝛤𝛤𝑡𝑡(𝑣𝑣) ��  𝛿𝛿 

                                                 ≤ �
𝑝𝑝
𝛤𝛤𝑡𝑡
� 𝛤𝛤𝑡𝑡(𝑣𝑣)�1 + �

𝛿𝛿
2
� �

2𝑝𝑝
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝛤𝛤𝑡𝑡

�� 𝛿𝛿 

                                                 ≤ �
𝑝𝑝𝑝𝑝
𝛤𝛤𝑡𝑡
� 𝛤𝛤𝑡𝑡(𝑣𝑣)�1 + �

𝛿𝛿
2
� �

2𝑝𝑝
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝛤𝛤𝑡𝑡

�� 

                                                 ≤ �2𝑝𝑝𝑝𝑝
𝛤𝛤𝑡𝑡
� 𝛤𝛤𝑡𝑡(𝑣𝑣)  for   𝛿𝛿 ≤ 𝛤𝛤𝑡𝑡

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝
   . 

 
Tri-Degree of a Vertex u ∈ V  

For each vertex u, and time stamp 𝑡𝑡, let tri-degree of u at time 𝑡𝑡, denoted by 𝐷𝐷𝑡𝑡(𝑢𝑢), be the number of 
triangles having u as a vertex. We have the following lemma whose proof is similar to proof of Lemma 3.2, 
omitted here to ease reading, and presented in the appendix: 
 
Lemma 3.3. For any u ∈ V and 𝛿𝛿 ≤ 𝑒𝑒𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚/2𝑝𝑝  and  𝑞𝑞 = 𝑜𝑜(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−1 )𝑝𝑝, 
 
𝔼𝔼[𝐷𝐷𝑡𝑡+𝛿𝛿(𝑢𝑢) − 𝐷𝐷𝑡𝑡(𝑢𝑢)] ≤ 𝛿𝛿𝜁𝜁𝑡𝑡2(𝑣𝑣)𝑝𝑝

𝛤𝛤𝑡𝑡
�1 + 8𝛿𝛿𝛿𝛿

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
+ 6𝛿𝛿2𝑝𝑝2

𝛤𝛤𝑡𝑡
� + 𝑑𝑑𝑡𝑡2(𝑣𝑣)(𝛿𝛿+𝛿𝛿2/𝑛𝑛)

𝑛𝑛2
 (9) 

 
where 𝜁𝜁𝑡𝑡2(𝑣𝑣) ≤ ∑ (𝑑𝑑𝑡𝑡(𝑢𝑢, 𝑣𝑣))2𝑢𝑢∈𝑉𝑉 . 
 
Remark 3.1. The growth rate of other notions of degree can be bounded similarly. These notions have been 
used in the literature to define various density measures [48, 23]. 
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ALGORITHMIC IMPLICATIONS: THE REST AND RUN STRATEGY  
 

In the dynamic graph literature, algorithms are often designed to update output solution after every 
single edge update; this is essential when edge updates arrive in an arbitrary (or adversarial) manner. 
Consider an algorithm designed for dynamic graphs which despite having low amortized cost, occasionally 
performs expensive operations in a row. Batching edge updates improve the run-time of these algorithms 
significantly. However, when not designed carefully, batching can harm the accuracy of algorithms. 

In this section, we utilize our previous results to devise a speed up subroutine based on batching for 
certain optimization algorithms without harming their accuracy. More precisely, for a given graph 𝐺𝐺𝑡𝑡, we 
identify time ∆𝑡𝑡  where a previously calculated solution still serves as a good approximation for any graph 
𝐺𝐺𝑡𝑡′; 𝑡𝑡′ ∈ [𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡]. Our subroutine declares [𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡] as a “rest” interval. During rest intervals the 
algorithm only collects the changes in the graph and does not perform expensive operations. In the “run” 
intervals, the algorithm has its normal performance except since the changes are received in batches it saves 
redundant operations; in the experimental section we observe significant speed up due to this simple trick 
while maintaining the accuracy compared to the optimal solution. 

Given a problem of finding a subgraph S in G satisfying a certain property, e.g., the problem of densest 
subgraph discovery, the question we seek to answer is: 
 

 
  Given an approximate solution 𝑆𝑆 for 𝐺𝐺𝑡𝑡, what is the largest ∆𝑡𝑡  such that with high probability, for any  

𝑡𝑡′ ≤ 𝑡𝑡 + ∆𝑡𝑡  , 𝑆𝑆 is a still “good” approximation for 𝐺𝐺𝑡𝑡′. 
 

 
Note that if an algorithm’s functionality is based on the degrees (tri-degree) of vertices of the input graph 
(or its degree in other induced subgraphs), Lemma 3.2 (Lemma 3.3) provides us with a value of ∆𝑡𝑡. 

Let 𝐶𝐶𝑡𝑡(𝑣𝑣) = 2𝑝𝑝 𝛤𝛤𝑡𝑡(𝑣𝑣)
𝛤𝛤𝑡𝑡

, and 𝛽𝛽𝑡𝑡(1 + 𝜀𝜀) be the change in degrees that the vertices in 𝑆𝑆 afford to undergo 
while maintaining the quality within 1 + 𝜀𝜀 precision. We define ∆𝑡𝑡  as follows: 
 
∆𝑡𝑡 ∶=  min

𝑣𝑣∈𝑉𝑉
𝜏𝜏𝑣𝑣   where  𝜏𝜏𝑣𝑣 ∶= min � 𝑒𝑒 𝛤𝛤𝑡𝑡

2𝑝𝑝𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
, 𝛽𝛽𝑡𝑡(1+𝜀𝜀)
𝐶𝐶𝑡𝑡(𝑣𝑣)

�   (10) 
 
Employing Lemma 3.2, we conclude that using the above value for ∆𝑡𝑡, for any vertex u (in particular the 
vertices in solution S) and δ ∈ [t,t + ∆𝑡𝑡] we will have: 𝔼𝔼[𝑑𝑑𝛿𝛿(𝑢𝑢) − 𝑑𝑑𝑡𝑡(𝑢𝑢)]≤ (1 + 𝜀𝜀)𝛽𝛽𝑡𝑡. 

We formalize this observation in the next section for finding the densest subgraph in a dynamic graph. 
In Section 4.2 we show how to generalize these results for finding tri-densest subgraph with trivial 
modifications. 
 
The Densest Subgraph Problem 

In this section, to demonstrate the applicability of the rest and run strategy, we apply it to the problem 
of finding the densest subgraph. We present a similar algorithm for finding tri-densest subgraph (a subgraph 
with maximum density of triangles) in the Section 4.2. We believe that our work provides initiatives to 
design of algorithms for finding approximations to the k-clique densest subgraph problem49. 

Finding maximum cliques in a graph and even approximating it within a reasonable factor is NP hard27. 
Thus, researchers often define density of a subgraph as its induced average degree. In the literature, the 
densest subgraph problem is discovery of subgraphs with maximum average degree (formal definition in 
Equation 11). This problem is polynomially tractable using flow computations26, and a greedy algorithm 
providing a 2 approximation19, also known as peeling is used in practice. Peeling is a key component of 
most of the state-of-the-art algorithms in various massive data settings. For example: (1) in data streaming 
model where the network is processed in passes and the goal is to obtain a solution with minimal number 
of passes and low memory consumption Bahmani et al propose an algorithm based on peeling12, (2) in the 
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MapReduce model where the data is distributed between different machines a number of algorithms have 
been suggested based on peeling12, 14, 22 and (3) the dynamic setting in which the graph has an evolving edge 
or vertex set, algorithms based on peeling have been shown to be effective14, 22. A summary of the results 
based on peeling is presented in Table 1. It is important to mention here that peeling is not the only main 
strategy to find densest subgraph and in fact several foremost algorithms maintaining sketches or sparsifiers 
have been suggested in data streaming and dynamic graph models48, 23, 39, 41, 22. We also remark that we do 
not aim to beat any of these algorithms theoretically. Our solution is to boost their runtime in practice by 
employing the rest and run strategy. We now formally define this problem and present our solution: 

Definition: densest subgraph discovery. Let the density of graph G = (V,E), denoted by ρ(G), be the 
ratio of the number of edges in G to the number of vertices of G, i.e. ρ(G) = |E|/|V |. In the densest subgraph 
problem, our goal is to find a subgraph with maximum density. Let 𝛽𝛽∗(𝐺𝐺) denote the maximum density 
among all subgraphs of G, and let densest(G) be a subgraph G with maximum density, so 

 
𝛽𝛽∗(𝐺𝐺) = max

𝐺𝐺′⊆𝐺𝐺
𝜌𝜌(𝐺𝐺′) ,    𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺) = argmax

𝐺𝐺′⊆𝐺𝐺
𝜌𝜌(𝐺𝐺′) (11) 

 
TABLE 1 

A SUMMARY OF THE PREVIOUS WORK ON DENSEST AND TRI-DENSEST SUBGRAPH 
DISCOVERY BASED ON “PEELING”. MR STANDS FOR MAPREDUCE AND 

ACPU STANDS FOR AMORTIZED COST PER UPDATE 
 

Authors/year Model Complexity Quality Problem 
Bahmani et al, 2012 [10] Streaming, #passes: 

log1+𝜀𝜀(𝑛𝑛) 
2(1 + 𝜀𝜀) densest 

 MR   subgraph 
Epasto et al, 2015 [20] Dynamic, ACPU 

log1+𝜀𝜀(𝑛𝑛) 
2(1 + 𝜀𝜀) densest 

 MR   subgraph 
Bhattacharya Dynamic, ACPU  densest 

et al, 2015 [12] Streaming, 
MR 

log1+𝜀𝜀(𝑛𝑛) 4(1 + 𝜀𝜀) subgraph 

Tsourakakis, Dynamic, #passes: 3(1 + 𝜀𝜀) Tri-densest 
2014 [49] MR log1+𝜀𝜀(𝑛𝑛)  subgraph 

 
In the dynamic graph setting algorithms of Epasto et al22 and Bhattacharya et al14, both based on the 

peeling strategy, present constant factor approximation algorithms, with amortized cost poly(logn) per edge 
addition/deletion. Despite having a low amortized cost, the above algorithms fail to output a solution in 
reasonable time when the size of a network (n) is huge (𝑛𝑛 ≃ 1𝑀𝑀) while the edges are evolving at a high 
rate; see Section 5. 

Our proposed solution for a faster densest subgraph discovery algorithm is to equip peeling with the 
rest and run strategy. We show that while maintaining 4(1 + 𝜀𝜀) approximation for the densest subgraph 
problem our algorithm has significant improvement in its running time compared to its counterparts. 

In this following, after briefly presenting the peeling strategy, we introduce our algorithm. In particular, 
our emphasis is on Epasto et al.’s algorithm 22 which adopts peeling to dynamic graphs, and proves an 
amortized cost of log(n) per edge update, while maintaining a 2(1 + 𝜀𝜀) approximate solution. We assume 
that the reader is familiar with their results and on a few occasions we rely on their work in our proofs (for 
more information see 22). 

Definition: Peeling. Let 𝛽𝛽∗ be the optimum density as defined in Equation 11. Partition the vertices of 
graph 𝐺𝐺 = 〈𝑉𝑉,𝐸𝐸〉 into layers 𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, … 𝑆𝑆𝑘𝑘 as follows to find a subgraph with density at least  𝛽𝛽∗/2(1 +
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𝜀𝜀): 𝑆𝑆0 = 𝑉𝑉, while 𝑆𝑆𝑟𝑟+1 ≠ ∅, derive 𝑆𝑆𝑟𝑟+1 ⊆ 𝑆𝑆𝑟𝑟,  ,  by removing vertices whose degree in the induced graph 
𝑆𝑆𝑟𝑟  is less than 2𝛽𝛽(1 + 𝜀𝜀). 

When the graph is static, a multiplicative 1 + 𝜀𝜀 approximation of   𝛽𝛽∗ can be approximated by iterating 
over all log1+ε(𝑛𝑛) values. For the dynamic case Epasto et al. suggest maintaining the following invariant 
if possible, and if not possible rebuilding the layers by iterating over all the log1+ε(𝑛𝑛)  values for β as in 
the static case: 

Invariant: For a given density 𝛽𝛽, parameter, and current graph 𝐺𝐺𝑡𝑡 = 〈𝑉𝑉𝑡𝑡 ,𝐸𝐸〉, the nodes of the graph are 
organized in layers 𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑘𝑘, where  𝑆𝑆0 = 𝑉𝑉𝑡𝑡 , and 𝑆𝑆𝑟𝑟+1 ⊆ 𝑆𝑆𝑟𝑟is obtained from removing vertices 
with degree less than 2𝛽𝛽(1 + 𝜀𝜀) from 𝑆𝑆𝑟𝑟, and 𝑆𝑆𝑘𝑘 = ∅. 
 
Algorithm 1 Rest and run densest sub graph. 
Input: threshold c, A series of edge updates: �〈(𝑢𝑢, 𝑣𝑣)𝑡𝑡𝑖𝑖 ,ℵ𝑡𝑡𝑖𝑖〉�, where (𝑢𝑢, 𝑣𝑣)𝑡𝑡𝑖𝑖 are pairs of vertices where 
the update takes place at time 𝑡𝑡𝑖𝑖  and ℵ𝑡𝑡𝑖𝑖  is either addition or removal of an edge. 
Output: Layers 

1. At time 𝑡𝑡0: Run Epasto et all algorithm and find 𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑘𝑘 
2. At time 𝑡𝑡0: Run Algorithm 2 and find p, q, r and R. 
3. if 𝑅𝑅 ≥ 𝑐𝑐 then 
4. continue 
5. repeat 
6. having p,q and r, find ∆t 
7. while 𝑡𝑡𝑖𝑖   ≤ 𝑡𝑡0  + ∆𝒕𝒕  do 
8. Update the graph and do nothing, let U be the set of updated vertices 
9. Push all the vertices in U in the stack and run algorithm of Epasto et al. to maintain 

𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑘𝑘  . 
10. 𝑡𝑡𝑖𝑖   = 𝑡𝑡𝑖𝑖   + ∆𝒕𝒕. 
11. until ∞ 

 
Algorithm 2 Learning Phase. 
Input: An initial graph G0, A series of edge updates: �〈(𝑢𝑢, 𝑣𝑣)𝑡𝑡𝑖𝑖 ,ℵ𝑡𝑡𝑖𝑖〉�, where (𝑢𝑢, 𝑣𝑣)𝑡𝑡𝑖𝑖 are pairs of vertices 
where the update takes place at time 𝑡𝑡𝑖𝑖  and ℵ𝑡𝑡𝑖𝑖  is either addition or removal of an edge. 
Output: 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 (as defined in Section 2.1), and linear regression’s coefficient of determination. 
 𝑡𝑡 ← 𝑡𝑡0 
for each 0 ≤ x ≤ n, let 𝑓𝑓(𝑥𝑥) = 0 and 𝑓𝑓′(𝑥𝑥) = 0. 
A ← 0, D ← 0 respectively the number of added/deleted edges. 
While  𝛤𝛤𝑡𝑡

𝑜𝑜

𝛤𝛤𝑡𝑡
∈ � 1

1+𝜀𝜀
, 1 + 𝜀𝜀� 𝛤𝛤0

𝑜𝑜

𝛤𝛤0
  and ∀𝑥𝑥:𝑁𝑁𝑡𝑡(𝑥𝑥) ∈ � 1

1+𝜀𝜀
, (1 + 𝜀𝜀)� 𝑁𝑁0(𝑥𝑥),  

𝑡𝑡 ≤ |𝐸𝐸0| do  
 𝑥𝑥 = 𝑑𝑑𝑡𝑡(u,v) 
 Update 𝑓𝑓(𝑥𝑥), A, D 
 Update 𝛤𝛤𝑡𝑡𝑜𝑜, 𝛤𝛤𝑡𝑡 , and 𝑁𝑁𝑡𝑡  

 𝑡𝑡 ← 𝑡𝑡 + 1 
 a,b ← applying linear regression to 𝑓𝑓(𝑥𝑥)/𝑁𝑁0(𝑥𝑥)= ax + b. 
Using Theorems 2.1 and 2.2 find 𝑝𝑝, 𝑞𝑞, 𝑟𝑟, and the coefficient of determination R.  
return p,q,r,R 

 
Our Algorithm: rest and run + Peeling. Our algorithm follows three steps: (1) We learn the parameters of 
the wedge picking model in a pre-processing phase (2) We find rest intervals after each run of the algorithm 
(3) we optimise the batch of the updated edges to feed them into the peeling algorithm. 
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The learning phase of our algorithm which was explained in full detail in Section 2.2 is presented as 
 

 
following lemma: 

 
Lemma 4.1. For an arbitrary vertex 𝑣𝑣 ∈ 𝑉𝑉 let 𝑑𝑑′(𝑣𝑣) be degree of 𝑣𝑣 in layer 𝑆𝑆𝑙𝑙(𝑣𝑣) at time 𝑡𝑡 + 𝜏𝜏(𝑣𝑣). For 
𝛽𝛽𝑂𝑂 ≥ 𝑐𝑐 log (𝑛𝑛)  for constant c > 1 with probability 1 − o(1) for all vertices v in 𝐺𝐺\𝑆𝑆𝑙𝑙, we have: 
 
𝑑𝑑′(𝑣𝑣) ≤ 4(1 + 𝜀𝜀)𝛽𝛽𝑂𝑂 .   (12) 
 
Proof. For each 𝑣𝑣 consider a sequence of random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝜏𝜏(𝑣𝑣), 𝑋𝑋𝑖𝑖  indicating degree 
incrementation of 𝑣𝑣 at time 𝑡𝑡 + 𝑖𝑖. Note that using the values of 𝜏𝜏 defined in Equation 10 we have 
𝔼𝔼[𝑑𝑑𝑡𝑡+𝜏𝜏(𝑣𝑣)(𝑣𝑣) − 𝑑𝑑𝑡𝑡(𝑣𝑣)] ≤ 𝛽𝛽(1 + 𝜀𝜀). Applying the Chernoff bound we have: ℙ[𝑑𝑑𝑡𝑡+𝜏𝜏(𝑣𝑣)(𝑣𝑣) − 𝑑𝑑𝑡𝑡(𝑣𝑣) ≥
2𝛽𝛽(1 + 𝜀𝜀)]≤ 𝑒𝑒−(1+𝜀𝜀)𝛽𝛽 ≤ 𝜔𝜔 �1

𝑛𝑛
� . 

 
Summing over all vertices in 𝐺𝐺\𝑆𝑆𝑙𝑙  and using the union bound we obtain: 
 

ℙ�∃𝑣𝑣 ∈ 𝐺𝐺\𝑆𝑆𝑙𝑙;  𝑑𝑑𝑡𝑡+𝜏𝜏(𝑣𝑣)(𝑣𝑣) − 𝑑𝑑𝑡𝑡(𝑣𝑣) ≥ 2𝛽𝛽(1 + 𝜀𝜀)� ≤ (𝑛𝑛 − log(𝑛𝑛))𝜔𝜔 �1
𝑛𝑛
� = 𝑜𝑜(1) . 

 
The following remark is concluded from Theorem [20] and Lemma 4.1: 

Remark 1. Algorithm 1 maintains a 4(1 + 𝜀𝜀) approximation to the densest subgraph problem. And if A 
is the total number of edges added to the graph in between any two consequent calls of Algorithm 1 and U 
is the total number of affected vertices, then since any batch of edges that are added to a single vertex in 
the graph are processed only once, this will cause the runtime of our algorithm to drop by a ratio of 𝐴𝐴/𝑈𝑈 
compared to that of Epasto et al22. 

In the next section, using Lemma 3.3 we employ the rest and run strategy to find tri-densest subgraphs 
(subgraphs with maximum average of tri-degree) within 5(1 + 𝜀𝜀) approximation factor. 
 
Finding Tri-Densest Subgraph 

Algorithms for densest subgraph may output subgraphs with small clustering coefficient and large 
diameter. Hence studying other similar problems have been suggested in the literature50, 49, 51: one example 
is searching for subgraphs which have maximal density of triangles i.e., discovery of tri-densest subgraphs. 
Note that a subgraph with a higher density of triangles has a higher clustering coefficient and is a better 
representative of triadic closure. 

We now proceed to present out solution to this problem in the wedge picking model. Definition: Tri-
densest subgraph discovery. Let the tri-density of a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) denoted by 𝜉𝜉(𝐺𝐺), be the ratio of the 
number of triangles in G to the number of vertices of G, i.e., 𝜉𝜉(𝐺𝐺) = |𝑊𝑊𝑐𝑐(𝐺𝐺′)|/3|𝑉𝑉′| where 𝑊𝑊𝑐𝑐(𝐺𝐺′ ) is its 
number of closed wedges (Note that each triangle counts as three closed wedges). In the tridensest subgraph 
problem, our goal is to find a subgraph with maximum tridensity. Let αO(G) denote the maximum tridensity 
among all subgraphs of G, and let tridensest(G) be a subgraph with maximum density, so 
 

𝛼𝛼𝑂𝑂(𝐺𝐺) = max
𝐺𝐺′⊆𝐺𝐺

 𝜉𝜉(𝐺𝐺′) ,   𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐺𝐺) = argmax 𝜉𝜉
𝐺𝐺′⊆𝐺𝐺

(𝐺𝐺′) . 

 
The problem has a 3(1 + 𝜀𝜀) solution when updates are adversarial: maintain peeling layers by removing 
vertices with tridegree less than 3(1+𝜀𝜀)𝛼𝛼 consecutively51. Following the strategy of rest and run, at each 
time t we run the algorithm UpdateTriPeeling of 51, calculate ∆t. Then, we wait until t + ∆t for the next call 
to UpdateTriPeeling. 
 
 

Algorithm 2. The rest and run intervals are found in the UpdatePeeling, Algorithm 1. The correctness of
Algorithm 1 algorithm can be easily concluded from correctness of Epasto et al’s algorithm 22 and the 
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Algorithm 3 Update (tri-Densest). 
Input: Layers 𝑆𝑆0, 𝑆𝑆1, … , 𝑆𝑆𝑙𝑙, T, most recent reading time t. 
Output: 5(1 + 𝜀𝜀) approximation to densest subgraph, most recent reading time t0 
Let ∆t = minv{𝜏𝜏𝑣𝑣  ∈ T}; 
Read ∆ edge updates: U = {(u1,v1),(u2,v2),...,(𝑢𝑢∆𝑡𝑡,𝑣𝑣∆𝑡𝑡)}; 
E = E ∪ U 
𝐺𝐺𝑡𝑡+∆𝑡𝑡  = 〈𝑉𝑉,𝐸𝐸〉 
Update N = {N(v)}v∈V and T = {τ(v)}v∈V correspondingly; UpdateTriPeeling (𝐺𝐺𝑡𝑡+∆𝑡𝑡 ,U ); return 𝑆𝑆𝑙𝑙, 𝑡𝑡′ 

 
The following Theorem proves the correctness of Algorithm 4.2, and its proof is identical to proof of 

Lemma 4.1 and thus omitted. 
Theorem 4.1. In the wedge picking model, and for αO ≥ clog(n); c > 1 a constant, there is an algorithm 

which maintains a 5(1 + 𝜀𝜀) approximation of tri-densest subgraph problem with probability 1 − o(1) and 
low amortized cost. 
 
EXPERIMENTS  
 
Asserting the Validity of Wedge Picking Model Assumptions 

In order to assert whether or not the probability of adding an edge between any pair of disconnected 
vertices is linear with respect to the size of their common neighbourhood, we run algorithm 2 the graphs of 
Table 2. Plotting f(d)/n(d) over d, and running linear regression, we observe two main general behaviours 
for these graphs: (a) coefficient of determination is large. i.e. higher than 0.6; see e.g. Figure 2a. (b) 
coefficient of determination is reasonable. i.e. between 0.2 and 0.5; see e.g. Figure 2b. For most of the 
graphs with coefficient of determination between 0.2 and 0.5, the plot shows an interesting branching 
behaviour: the dependence is linear but it is in fact more that one line; see e.g. Figure 2b. In both above 
cases we conclude linearity. 
 

FIGURE 2 
PLOT OF F(D)/N(D) OVER D AS DEFINED IN SECTION 2.2. THE GREEN LINE SHOWS THE 

RESULT OF LINEAR REGRESSION 

  
(a) dataset: Digg Friends, Slope: 0.01, intercept: 0.02, 
coefficient of determination: 0.66. The high value of the 
coefficient of determination certifies linear relation. 

(b) dataset: Facebook wall posts, Slope: 0.0004, 
intercept: .005, coefficient of determination: 0.36. 
Despite low coefficient of determination, we conclude 
linearity since we can observe two separate linear 
behaviors. 
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The Densest Subgraph Algorithm in Real Dynamic Graphs 
In this section, our goal is to demonstrate the applicability of the rest and run strategy, in particular 

when it is applied to the densest subgraph problem. Thus, we compare the run time and accuracy of 
Algorithm 1 and 22 on the data sets presented in Table 2. We note that all the networks of Table 4 are not 
dynamic and not helpful for this section. We will later use them to generate synthetic data (Section 5.3). 
Besides, these datasets only evolve through edge addition, thus we set q = 0 and we extract p and r through 
learning these parameters by running Algorithm 2. 
 

TABLE 2 
WE USED THE ABOVE DYNAMIC DATASETS FROM KOBLENZ DATASET COLLECTION 

IN OUR EXPERIMENTS OF SECTIONS 5.2 AND 5.3 
 

data set n |𝐸𝐸𝑡𝑡′| 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝑡𝑡0 Γ0 βt0 
Facebook (WOSN) 63,731 481327 25.640 1,098 1758 33044752 91.268 

Digg friends 279,630 1,731,653 12.385 12,204 5276 97367436 57.34 
YouTube 3,223,589 9,375,374 5.8167 91,751 39021 1245457386 33.987 

 
Accuracy. Figure 3 shows the result of running Algorithm 1 on Digg friends dataset. We observe that 

algorithm tracks the density outputted by [20] closely, thus in practice the rest and run strategy does not 
harm accuracy of the original algorithm. 
 

FIGURE 3 
COMPARISON OF ACCURACY OF OUR ALGORITHM AGAINST [20] ON DIGG FRIENDS 

DATASET. THE X AXIS IS THE NUMBER OF REST AND RUNS AND THE Y AXIS IS 
THE DENSITY OUTPUT BY EACH ALGORITHM 

 

                                                    
 

Run time. In Table 3, we present the runtime of the algorithm for all datasets in Table 2. The runtimes 
demonstrate that the rest and run strategy is highly effective in reducing when employed on huge graphs. 
In particular, when the original algorithm does not terminate in reasonable time; see e.g., the row 
corresponding to YouTube. 
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TABLE 3 
RUNTIME COMPARISON ON REAL DYNAMIC DATA SETS. THE X AXIS IS THE NUMBER 
OF REST AND RUNS AND THE Y AXIS IS THE DENSITY OUTPUT BY EACH ALGORITHM 
 

data set Our running time [20] 
Facebook (WOSN) 4s 12m 

Digg Friends 20s 1m 
YouTube 46s +8h 

 
The Densest Subgraph Algorithm in Synthetically Generated Data 

In this section, our goal is to study the efficiency and accuracy of Algorithm 1 in an ideal scenario when 
the graph’s evolution is perfectly consistent with the assumptions of our model i.e., we have perfect 
linearity. To achieve this, we take r,q = 0.001,p = 0.75. We generate the edge sequence separately and then 
we run dense graph detection algorithm; doing so we achieve two goals (1) the time spent on the edge 
sequence generation has no affect in our algorithm runtime and (2) our comparison is based on the same 
benchmark for our algorithm and the algorithms we compare against. 

In subsection 5.3.1 we assess the quality of approximation by comparing the density returned by our 
algorithm to the optimal density found by a linear program (LP) solver. We use an open source LP solver 
for our experiments. In Subsection 5.3.2, we switch to larger networks, having vertex set of order ten 
thousand to a million, to compare the quality and run time of our algorithm to 22. 

Data Description. The datasets are collected from 3 and 5, and are listed in Table 4 and 2. We pre-
process these datasets and remove duplicate edges and self loops, so for some data sets the number of edges 
in our input is slightly smaller than those presented in the original sources. For dynamic graphs, we sort 
them according to their time-stamps in our pre-processing. A more detailed description of the data sets is 
presented in Appendix. 

 
Small Datasets: A Comparison of Accuracy Against Optimal Solution 

We evaluate the quality of our solution by comparing it to the optimal answer. To obtain the maximum 
density, we solve the linear programming (LP) formulated by Charikar et al.19 In Figure 4, we present the 
two data sets for which we observed the largest gap between the outcomes of the two algorithms (ours and 
the LP). Note that the gap is always less than 1.15 after 40 rounds of rest-and-run. 
 
Big Datasets: Runtime and Quality Assessment on Large Data Sets 

We compare the efficiency of our algorithm to 22, which has amortized cost of a few microseconds per 
update. 
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FIGURE 4 
QUALITY COMPARISON AGAINST OPT [17] ON DATA SETS: CA-CONDMAT (LEFT), 

EMAIL-EU-CORE (RIGHT). THE X AXIS IS THE NUMBER OF REST AND RUNS 
AND THE Y AXIS IS THE DENSITY OUTPUT BY EACH ALGORITHM 

 

                                    
 

TABLE 4 
WE USE THE ABOVE REAL WORLD GRAPHS WHICH CAN BE FOUND IN [3] 

 
data set n |Et0| davg dmax ∆t0 Γ0 βt0 

email-Eu-core 986 16,064 32 345 626 1,183,216 26.86 
CA-GrQc 5241 14,484 5 81 147 229,867 19.56 

CA-CondMat 23,133 93,439 8 279 506 1,967,650 12.5 
soc-Epinions 75,879 405740 10 3044 5517 74,201,120 59.06 

twitter 81,306 1,342,296 33 3383 6131 230,093,274 50.07 
dblp 317,080 1,049,866 6 343 622 21,780,889 48.60 

Amazon products 334,863 925,872 5 549 995 9,752,186 2.76 
soc-pokec-
relationships 1,632,803 22,301,964 27 14584 26919 2,086,073,558 32.68 

 
In order to make our comparison more accurate, we feed the same sequence of updates to our algorithm 

and the algorithm of 22 for 100 rounds of rest and run. The only difference between our algorithm and 
algorithm of 22 is that we apply the changes after ∆t updates at once to the graph and run UpdatePeeling. In 
contrast, 22 calls UpdatePeeling after any single update. We observe that the negligible theoretical gap 
between the accuracy of our algorithm vs 22 vanishes in practice, i.e., in our experiments often both solutions 
have the same quality. In fact, as all of our plots demonstrate, the ratio of our algorithm’s output and the 
output of 22 is always at most 1.65; see Figure 4. 

Foremost, we observe a remarkable progress in the runtime of our algorithm. As we had expected, large 
values of ∆ts boost the total running time of our algorithm to the level that it outperforms algorithms of 22 
by factor of 1000. The result of our comparison is presented in Table 5. 
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FIGURE 5 
QUALITY COMPARISON AGAINST [20] ON CA-GRQC (LEFT) AND EMAIL-EU-CORE 

(RIGHT) DATA SETS. THE X AXIS IS THE NUMBER OF REST AND RUNS AND 
THE Y AXIS IS THE DENSITY OUTPUT BY EACH ALGORITHM 

 

 
 

TABLE 5 
RUNTIME COMPARISON ON LARGER DATA SETS 

 
data set Our running time [20] 

Amazon products 6s 48m41s 
soc-Epinions 12.4s 4h23m12s 

twitter 13.52s 7h4m55s 
soc-pokec-relationships 2m 18s +24h 

dblp 3.43s 32m 
 

Data Set Description 
Here we provide information on the data sets used in our experiments. This information is copied from 

pages on [3] describing the data set for completeness. 
 
Email-Eu-Core Network 

The network was generated using email data from a large European research institution. The data set 
has been anonymized. There is an edge (u,v) in the network if person u sent person v at least one email. The 
e-mails only represent communication between institution members (the core), and the dataset does not 
contain incoming messages from or outgoing messages to the rest of the world. 
 
Collaboration Networks 

We have two networks from collaboration network datasets on5: CA-GrQc (General Relativity and 
Quantum Cosmology) and CA-CondMat (General Relativity and Quantum Cosmology). These networks 
are from e-print arXiv on the related field. If an author i co-authored a paper with author j, the graph contains 
a undirected edge from i to j. If the paper is co-authored by k authors this generates a completely connected 
(sub)graph on k nodes. 
 
Epinions Social Network 

This is a who-trust-whom online social network of a general consumer review site Epinions.com. 
Members of the site can decide whether to ”trust” each other. All the trust relationships interact and form 
the Web of Trust which is then combined with review ratings to determine which reviews are shown to the 
user. 
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Twitter 
This dataset consists of ’circles’ (or ’lists’) from Twitter. Twitter data was crawled from public sources. 

 
DBLP Collaboration Network 

The DBLP computer science bibliography provides a comprehensive list of research papers in computer 
science. A co-authorship network is constructed by connecting two authors if they publish at least one paper 
together. 
 
Amazon Product Co-Purchasing Network 

Network was collected by crawling Amazon website. It is based on "Customers Who Bought This Item 
Also Bought" feature of the Amazon website. If a product i is frequently co-purchased with product j, the 
graph contains an undirected edge from i to j. 

Pokec social network Pokec is the most popular on-line social network in Slovakia. The popularity of 
network has not changed even after the coming of Facebook. Pokec has been provided for more than 10 
years and connects more than 1.6 million people. 
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