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This paper describes the development and relevance of the coefficient of prediction, . The 
coefficient of prediction is independent from the quality of fit.  This paper shows evidence of the 
gain in accuracy and precision in the estimate of the quality of prediction when using 

P 2

P 2 . 
 
INTRODUCTION 
 
     The coefficient of determination, R2, is widely used as a measure of fit for model selection 
and variable selection.  However, R2 does not offer any insight about the quality of the predicted 
values or the potential influence of particular observed values on the predicted values.  In 
regression analysis, statistical procedures such as t test, F test, and prediction intervals provide 
insight into the quality and the potential influence of individual observations on the estimate. 
The prediction sum of squares (PRESS statistic) is used as an indication of the predictive power 
of a model.  Computing the PRESS statistic consists on fitting the model, repeatedly, leaving out 
an observation each time.  In each repetition the model is used to predict the observation that was 
left out. 
     PRESS simulates prediction by leaving out the observation that it is trying to predict.  An 
external residual for the ith observation is equivalent to calculating the external predicted value 

 without the use of the iˆ Y i( )
th observation.  Since  is not used in fitting the regression model, 

both the external predicted values and the external residuals are independent of 
iY

Yi

     The PRESS statistic is the sum of the squared external residuals (see FIGURE 1). 
. 
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FIGURE 1 
PREDICTION SUM OF SQUARES 

PRESS = e i( )
2

i=1

n

∑
 

where, 
e i( ) = Yi − ˆ Y i( ) 

 
     The PRESS is a measure of how well the use of the fitted values for a subset model can 
predict the observed responses, Yi (Neter et al., 1996).  The best regression will have a relatively 
small predictive sum of squares.  It has been shown that PRESS is a weighted function of the 
least squares residuals.  Residuals associated with observations whose prediction variability is 
large are weighted less (Quan, 1988).  Observe the distinction made between external predicted 
values , which are independent of ˆ Y i( ) Yi, and internal predicted values .  The independence of 
the external residuals in  

ˆ Y i

FIGURE 1 enables the PRESS statistic to be a true assessment of the validity or prediction 
capabilities of the regression model. 
     Internal predicted values come from a single regression model that includes all  
observations in its construction.  Thus, unlike external predicted values , internal predicted 

values  are not independent of 

n
ˆ Y i( )

ˆ Y i Yi.  Internal or ordinary residuals, 
 

FIGURE 2 
INTERNAL OR ORDINARY RESIDUALS 

ei = Yi − ˆ Y i 
     The sum of squares error (SSE) is the sum of the squared internal residuals (see FIGURE 3). 

 
FIGURE 3 

SUM OF SQUARE RESIDUALS 
SSE = ei

2∑  
 
     While SSE measures quality of fit, PRESS measures quality of prediction.  Surprisingly, the 
computations involved computing  external residuals and the PRESS statistic are minimal.  
The computations and methodology involved in calculating external residuals, the PRESS 
statistic, and the  are described below.  The performance of  is compared to the 
performance of 

n

P 2 P 2

R2 and the Akaike Information Criterion (AIC) on a subsequent section 
 
MEASURES OF PREDICTION 

     Consider the following regression equation: Y  i = bj xij + ei
j= 0

k

∑
where  for all  and i .  Using matrix-vector notation for convenience, the 
appropriate normal equations for this regression are where  is an 

xi0 =1 i =1,2,...,n
X n × p data matrix, Y  is an 

 column vector for the response variable and b  is n ×1 p ×1 vector of estimated regression 
coefficients . p = k + 1( )

 



 
FIGURE 4 

NORMAL EQUATIONS 
′ X Xb = ′ X Y 

 
     Solving (FIGURE 4) for  consists of obtaining the inverse to the  matrix b pp × ′ X X( ) and 
multiplying it by the  column vector 1×p ′ X Y . 

 
FIGURE 5 

VECTOR OF ESTIMATED REGRESSION COEFFICIENTS 
b = ′ X X( )−1 ′ X Y 

 
The HAT Matrix 
     The Hat matrix is an extremely efficient matrix for calculating prediction measures as well as 
for internal data analysis  (Hoaglin, et.al., 1973, Hemmerle, 1967).  This  matrix is defined 
in FIGURE 6. 

nn ×

 
FIGURE 6 

HAT MATRIX 
H = X ′ X X( )−1 ′ X  

 
where the data and inverse matrices were defined earlier.  Properties of the Hat matrix are         
(a) 0  and (b) . ≤ hii ≤1 hii∑ = p

(a) The diagonal elements of H  are between zero and one. 
(b) Unless ′ X X( )−1 is ill-conditioned, the diagonal elements of  sum to . H p

     Using the Hat matrix, a  vector of point predictions is easily computed as shown in 
FIGURE 7. 

1×n

FIGURE 7 
VECTOR OF POINT PREDICTORS 

ˆ Y = HY 
 
Estimated prediction variances can be obtained as shown in FIGURE 8. 

 
FIGURE 8 

ESTIMATED PREDICTION VARIANCES 
ˆ V ˆ Y i( )( )= MSE p( )hii  

 
where  the ihii

th diagonal element of  and MSE  is the mean square error for the p parameter 
model. A  vector of internal residuals may be computed as follows, 

H p

1×n
 

FIGURE 9 
VECTOR OF INTERNAL RESIDUALS 

e = I − H[ ]Y  

 



 
External Residuals and PRESS 
     Computationally, one of the most useful properties the Hat matrix its use computing external 
residuals (FIGURE 10) and the PRESS statistic (FIGURE 1). 

 
FIGURE 10 

EXTERNAL RESIDUALS 

e i( ) =
ei

1− hii( ) 
where and  are defined above.  The external residual for the iei hii

th observation, , is obtained 

from computing  in FIGURE 7without the use of the i

e i( )
ˆ Y i

th observation Yi.  Since Yi was not used 
in computing the regression model to predict , the external residual e  is independent of ˆ Y i i( ) Yi.  
This enables the PRESS statistic to be a true assessment of the prediction capabilities of the 
regression model.  In short, external residuals enable quality of prediction measures to be 
independent of quality of fit measures (i.e., R2). 
 
The AIC Statistic 
     Of the several ways different ways of trading off goodness-of-fit and parsimony, adjusted 2R  
has the least amount of adjustment for extra explanatory variables.  The most popular 
alternatives are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 
(BIC or Schwartz Information Criterion) (Kennedy, 1998). 

 
FIGURE 11 

INFORMATION MEASURES (AKAIKE & BAYESIAN) 
 

AIC = n ln SSE
n

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + 2p

 
BIC = n ln SSE

n
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + pln n( )

 
 
     These information measures statistics are designed to select, from a small number of 
alternatives, the model with the best predictive power.  Usually, the model that gives the smallest 
value of AIC (or BIC) statistic is the preferred one.  The BIC is claimed to be an improvement 
over the AIC since the AIC is inclined to overfitting the data.  From the equations inFIGURE 11, 
it is also evident that AIC and BIC are not independent from Yi. 
 
The P 2  Statistic 
     Observe that the PRESS statistic in FIGURE 1 is similar to the sum of square errors in 
regression analysis in FIGURE 12. The PRESS statistic uses external predicted values  while 

the SSE statistic uses internal predicted values  Y i.  Thus, just as SSE is used in calculating the 
coefficient of determination, 

ˆ Y i( )
ˆ

 
 

 



 
FIGURE 12 

SUM OF SQUARE ERRORS 

SSE = Yi − ˆ Y i( )2

i=1

n

∑
 

 
FIGURE 13 

COEFFICIENT OF DETERMINATION 
 

R2 =1−
SSE
SST  

where, 

SST = Yi −Y ( )2

i=1

n

∑
 

     The PRESS statistic is used in calculating P 2  as shown in FIGURE 14. 
 

FIGURE 14 
COEFFICIENT OF PREDICTIVE POWER 

P 2 =1−
PRESS
SST i( )  

where, 

SST i( ) = Yi −Y i( )( )2
∑ =

n
n −1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2

SST
 

     The symbol Y i( ) represents the arithmetic mean for n −1 values of Yi; the value of Yi is 
subtracted from the mean Y  used in SST.  Thus, unlike Yi and Y  in FIGURE 13, Yi and Y i( ) in 
FIGURE 14 are independent (see proof in appendix). This independence concept is the same 
concept associated with the PRESS statistic.  Notice that all components in IGURE 14 are totally 
independent.  This independence enables P 2  to adequately measure a regression model's quality 
of prediction. 
     Notice that, in computing the coefficient of prediction, P 2 , the ratio PRESS to  is used, 
rather than the ratio SSE to 

SSTi( )

SST  (see equations FIGURE 13 and FIGURE 14).  Thus,  is 
analogous to

P 2

R2; however,  measures quality of prediction while P 2 R2 measures quality of fit.  
The use of P 2  as a model selection criterion, addresses the loss in predictability when a variable 
is deleted from the regression model.   
     A comparison between P 2 , R2 and AIC is shown in the following sections. A Monte Carlo 
simulation is used to evaluate the efficiency of P 2 , R2 and AIC.  A real data set is used to 
demonstrate the performance of these measures. 
 
Monte Carlo Experiment: Comparing P 2 , R2and AIC 
     A Monte Carlo experiment was performed to compare the performance of the , against the 
coefficient of determination and the AIC.  Given a data matrix , linear 
additive models of the forms: 

P2

X ~ Gaussian 0,Σ( )
x3 = f x1( ), x3 = f x2( ) and x3 = f x1, x2( ) were fitted.  Samples 

sizes 1,000 are extracted from the population .  Linear models are fitted to these sample data. X

 



Estimates for the sampling distribution for , the coefficients of determination, the AIC and the 
BIC are obtained.  Several covariance matrices were used to specify various types of 
relationships between variables.  The linear models shown in FIGURE 15 are fitted at each 
iteration. 

P2

 
FIGURE 15 

REGRESSION MODELS FOR THE MC SIMULATION 
X3 = ˆ β 0 + ˆ β 1X1 + e 
X3 = ˆ β 0 + ˆ β 2X2 + e 

X3 = ˆ β 0 + ˆ β 1X1 + ˆ β 2X2 + e  
X3 = ˆ β 0 + ˆ β 1X1 + ˆ β 2X2 + ˆ β 3X1X2 + e  

 
     One thousand iterations were run.  Each iteration consists of the following steps: 1) sample 
1,000 observations from a multivariate Gaussian distribution with the given covariance matrix; 
2) generating a sample size 1,000; 3) estimating the parameters for the model; 4) computing R2 
and P 2  for the training set; 5) using the resulting model to estimate  for the hold-out set; 6) 
estimate the sampling distributions for 

X3

R2, AIC and ; 7) compare the relative efficiency of 
. 

P 2

P 2

     The first covariance matrix  Σ1 (see FIGURE 16) was specified so that one predictor ( ) is 
strongly related to the response variable ( ), while  is almost not related to the response 
variable and not related at all to the other predictor. 

x1

x3 x2

 
FIGURE 16 

COVARIANCE MATRIX 
 

=
1 0 0.9
0 1 0.1

0.90 0.10 1

0
0
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⎢ 
⎢ 
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⎦ 

⎥ 
⎥ 
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1∑
 

 
     The 95% percentile estimator Fθ

−1 0.025( ),Fθ
−1 0.975( )[ ] is computed for the sampling 

distributions for the statistics of interest. 
 

TABLE 1 
MODEL -  x3 = ˆ β 0 + ˆ β 1x2

Statistic Fθ
−1 0.025( ) Fθ

−1 0.975( ) 
P2 -0.0037 0.0320 
R2 0.0003 0.0358 
AIC 1351.662 1475.128 
BIC 1364.306 1487.772 

 
Evidently, adding to the model variable  as a predictor to our model as a predictor will 
significantly increase the model fit. 

1x

 

 



TABLE 2 
MODEL -  x3 = ˆ β 0 + ˆ β 1x1 + ˆ β 2x2

Statistic Fθ
−1 0.025( ) Fθ

−1 0.975( ) 
P2 0.7871 0.8466 
R2 0.7887 0.8479 
Radj

2  0.7879 0.8473 
AIC 506.3423 627.3765 
BIC 523.2007 644.2349 

 
     Adding the interaction term to the model does not improve the fit by much. 
 

TABLE 3 
MODEL -  x3 = ˆ β 0 + ˆ β 1x1 + ˆ β 2x2 + ˆ β 3x1x2

Statistic Fθ
−1 0.025( ) Fθ

−1 0.975( ) 
P2 0.7872 0.8462 
R2 0.7898 0.8481 
Radj

2  0.7886 0.8471 
AIC 506.8535 627.8151 
BIC 527.9265 648.8882 

 

     We are defining the relative efficiency as: CVθ

CV
P 2

; where CV
P 2  is the coefficient of variability 

for P2 and CVθ  is the coefficient of variability for statistic θ . 
 

TABLE 4 
RELATIVE EFFICIENCY,  x3 = ˆ β 0 + ˆ β 1x2

  
Statistic θ  

Coefficient of 
Variation 

Relative 
Efficiency P2 

P2 1.2192 1.0000 
R2 0.8002 0.6563 
Radj

2  0.9639 0.7906 
AIC 0.0218 0.0179 
BIC 0.0216 0.0177 

 
 
 
 
 
 
 
 
 
TABLE 4 shows that the relative efficiency of P2 is poor for this model with relatively poor fit.  
However, in repeated simulations it was found that for well-fitted models the P2 tends to be 
relatively more efficient than the AIC, e.g. TABLE 5 
 
 
 

 



 
TABLE 5 

RELATIVE EFFICIENCY,  x3 = ˆ β 0 + ˆ β 1x1 + ˆ β 2x2

 
Statisticθ  

Coefficient of 
Variation 

Relative 
Efficiency  2P

P 2  0.0183 1.0000 
2R  0.0181 0.9891 

Radj
2  0.0182 0.9945 

AIC 0.0551 3.0109 
BIC 0.0531 2.9016 

 
     Several Monte Carlo simulations of a similar kind were conducted.  The results were similar 
as the ones shown previously.  The  statistic is not bound by zero and one, as is the coefficient 
of determination,

P 2

R2.  However, in a practical sense, P 2  rarely exceeds the value of one.  In 
several simulation experiments of over 1000 data sets, P 2 ≤ 1.0 was true in every case and 
P 2 < 0.0 in some cases. 
 
A Practical Example: Comparing P 2 , R2and AIC 
     Consider the data of vehicles from 2005.  There is data from 411 vehicles.  The mileage per 
gallon in the city will be estimated based on the horsepower and the inverse of the weight of the 
vehicle. 

Y : Mileage per gallon in city 

X1: Horsepower 

X2: Weight -1

 
     A linear model is suggested in FIGURE 17. 

 
FIGURE 17 

LINEAR MODEL 
 

Y = ˆ β 0 + ˆ β 1X1 + ˆ β 2X2 + e  
 

TABLE 6 
CORRELATION MATRIX 

city.mpg horsepower 1/weight
city.mpg 1 ‐0.7317 0.8899
horsepower ‐0.7317 1 ‐0.6500
1/weight 0.8899 ‐0.6500 1

 
     The regression estimates are shown in TABLE 7. 
 
 

 



 
TABLE 7 

LINEAR REGRESSION 
 Estimate pvalue 
Intercept 8.304 0.0000 

Horsepower -0.0151 0.0000 
Weight -1 0.0005 0.0000 

R2 0.8327  
F test (pvalue) 0.0000  

 
     The performance of R2,  and AIC will be compared.  The data set consists of 411 
observations.  Bootstrap estimates for 

P 2

R2, P 2  and AIC and their corresponding biases and 
standard errors were estimated using 500 replicas. 
     The results are shown in  
 
TABLE 8.  Let ˆ θ *  be the bootstrap estimate, SE(  θ̂ ) denote the standard error of the estimate  θ̂ , 
the relative bias is defined as bias ˆ θ ( ) ˆ θ *  and the relative standard error is defined as se ˆ θ ( ) ˆ θ * . 
 

TABLE 8 
BOOTSTRAP ESTIMATES 

θ  ˆ θ *  Bias (  θ̂ ) SE ( ˆ θ ) Relative Bias Relative SE( ˆ θ ) 
R2 0.8327 -1.6690 0.1270 -2.0044 0.1526 

AIC 1589.415 8.5406 36.6790 -0.0054 0.0231 

P 2  0.8303 0.0034 0.0143 0.0042 0.0172 
 
     It was found that, for this real life data set, the P 2  is relatively more accurate and more 
precise than the coefficient of determination and the AIC. 
 
FURTHER ANALYSIS 
 
     The simulation in this study was limited to a few variables exhibiting specific multivariate 
Gaussian distribution.  Further analysis would involve models with a larger number of variables, 
varying the covariance structure at random and benchmark data sets. 
     The usefulness of P 2  should be tested in an experiment involving model selection.  The 
consistency of must also be evaluated.  P 2

 
CONCLUDING REMARKS 
 
     In regression analysis, the PRESS concept is used in generating quality-of-prediction 
measures. Since PRESS is independent of Yi, it is a true assessment of the prediction capabilities 
of the regression model.  A relative measure of prediction is P 2 , the coefficient of prediction.  
Unlike R2 and AIC, P 2  is based on PRESS and thus is also independent of Yi. The numerical 
limits of are not constrained to values between zero and one. Although theoretically possible, P 2

2P  rarely exceeds the value of one.  From Monte Carlo simulations it was found that 2P  can be 

 



more efficient than AIC for the same sample sizes.  From a real life example it was found that  
was more accurate and more precise than both:

P 2

R2 and AIC.  The implications would be that 
using P 2  for model selection would represent a lesser probability of type II error than the classic 
test for increments in R2 or tests for reductions in AIC. 

 
APPENDIX 
 
     The concept of dividing the PRESS statistic by SST  rather than SST is unique with this 
author.  Calculating P  by dividing by SST  gives a more accurate measure of quality of fit. 

i( )
2

i( )

P 2 =1−
PRESS
SST i( )

;    (1) 

where 

SST i( ) = Yi −Y i( )( )2
∑ =

n
n −1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2

SST .  (2) 

SST = Yi −Y ( 2

i
)

=1

n

∑     (3) 

     The symbol Y i( ) represents the arithmetic mean of n −1 Y-values; the current Yi values is 
subtracted out of Y .  Thus, 

Y i( ) =
nY −Yi( )

n −1( )
;    (4) 

where Y  is the overall arithmetic mean for n Y-values. Using (30) for Y i( ) we show 

SST i( ) = Yi −Y i( )( )2
∑

          =
Yi n −1( )− nY −Yi( )( )

n −1( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

∑

          =
n −1+1( )Yi − nY ( )

n −1( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

∑

          =
n Yi −Y ( )( )

n −1( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

∑

          =
n

n −1( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

Y −Y ( )2∑

          = n
n −1( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

SST

    (5) 

 
 
 
 

 



 
Hat matrix 
 
 

ˆ y = Xb

   = X ′ X X( )−1 ′ X y
   = Hy
where,

H = hij{ }= X ′ X X( )−1 ′ X 

and
H = ′ H H     (6) 
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